Spleen Australia guidelines for the prevention of sepsis in patients with asplenia and hyposplenia in Australia and New Zealand.

Kudzai Kanhutu1,2, Penelope Jones3, Allen C Cheng3,4, Louise Grannell3,5, Emma Best6, Denis Spelman3,7

1 Victorian Infectious Diseases Service, Royal Melbourne Hospital, Victoria
2 The University of Melbourne, Faculty of Medicine, Dentistry and Health Sciences, Victoria
3 Spleen Australia, Department of Infectious Diseases, Alfred Health, Victoria
4 Infection Prevention and Healthcare Epidemiology Unit, Alfred Health; School of Public Health and Preventive Medicine, Monash University
5 Pharmacy Department Alfred Health, Victoria
6 University of Auckland and Starship Children’s Hospital, Auckland, New Zealand
7 Microbiology Unit, Department of Pathology, Alfred Health, Victoria

Corresponding author email: kudzai.kanhutu@mh.org.au

ABSTRACT:

People with asplenia or hyposplenism are at increased risk of fulminant sepsis which carries a high mortality rate. A range of preventive measures are recommended although there is ongoing evidence that knowledge of and adherence to these strategies is poor. There have been significant changes in recommended vaccinations since the previously published recommendations in 2008. We provide current recommendations to help Australian and New Zealand clinicians in the prevention of sepsis in patients with asplenia and hyposplenia. The guideline includes Australian epidemiological data, preferred diagnostic techniques and recommendations for optimal antimicrobial prophylaxis and vaccination protocols.

KEYWORDS: Asplenia, hyposplenism, sepsis, prevention, guideline

Corresponding author full contact details:
Name: Kudzai Kanhutu
Address: Peter Doherty Institute, Victorian Infectious Diseases Service
Level 5/792 Elizabeth Street
Post code: 3000
City: Melbourne
Country: Australia
Fax: 03 8344 8276
Email: kudzai.kanhutu@mh.org.au

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/imj.13348

This article is protected by copyright. All rights reserved.
BACKGROUND:

Fulminant sepsis is a significant risk in patients following splenectomy, or in patients who have hyposplenism for other reasons such as congenital asplenia, coeliac disease or following bone marrow transplantation. The incidence of such infections can be reduced by preventive measures, although compliance with recommendations in the literature is poor (1, 2). The Spleen Australia advisory group, which includes medical, nursing and pharmacy expertise, meets monthly and considers clinical questions received from patients and doctors, as well as recent developments in prevention measures for patients with asplenia/hyposplenism. Previous guidelines (3) published in 2008 have been updated, with a draft circulated to previous authors and selected adult and paediatric infectious diseases physicians in both Australia and New Zealand with an interest in immunisation in patients with asplenia/hyposplenism. These present guidelines have been endorsed by the Australasian Society for Infectious Diseases (ASID). This update was necessary in view of the development of new vaccines, as well as new observational data and recommendations from UK (4), Canada (5), Australia (6, 7), USA (8-10), and New Zealand (11, 12). In addition to a literature review a number of clinicians from New Zealand and Australia were consulted regarding their current practices in relation to patients with asplenia/hyposplenism.

MAIN TEXT:

Identifying patients at risk

The number of persons with asplenia or hyposplenism in Australia is unknown. Based on administrative data, Dendle and colleagues documented 2,574 surgical splenectomies over 8 years in the state of Victoria, an estimated incidence rate of 6.4 per 100,000 per year (13). This would suggest there are around 0.1% and 0.3%, or 20,000 - 60,000 Australians with asplenia. However, the incidence of splenectomy may be decreasing with the increasing use of splenic artery embolisation following trauma (14, 15).

Surgical splenectomy, either following trauma or therapeutically, is the most common reason for asplenia (13). As such, maximal efforts should be made to preserve healthy splenic tissue and therefore splenic function. Salvage techniques that have been suggested include splenic artery embolisation (SAE), splenic repair and the embedding of splenic tissue in the omentum.

Medical causes of asplenia or hyposplenism include allogeneic bone marrow transplantation, especially in the presence of chronic graft versus host disease, coeliac disease, patients with haemoglobinopathies, systemic lupus erythematosus, and inflammatory bowel disease. There are
also a small number of patients with familial/congenital asplenia. Patients at risk of hyposplenism, e.g. may be monitored for the appearance of Howell-Jolly bodies (HJBs).

The presence of intraerythrocytic inclusions called HJBs on a blood film is the most commonly used diagnostic marker of asplenia/hyposplenia although this is an indicator of the spleen’s ability to remove damaged cells rather than of immunological function. Quantification of IgM memory B cells may be of use for predicting an individual’s capacity to mount an immune response to encapsulated bacteria following splenectomy. A large study found minimal evidence of hyposplenism following embolisation (16, 17). Another study on patients with portal hypertension/cirrhosis who underwent SAE also had a significant number of patients not found to be hyposplenic (18).

Ultrasound and computerised tomography can be used to identify the presence of the spleen or splenic tissue but the size of the residual tissue does not reliably correlate with function (19). However, clinical follow up is required with a blood film taken greater than 4 weeks post procedure to assess presence of HJBs. Primary vaccinations may be considered for patients after splenic irradiation, partial splenectomy or SAE.

Incidence of sepsis in patients with asplenia/hyposplenia

The reported incidence varies with the patient group, duration of follow up, definitions used, and the method of estimation. The percentage of patients who develop sepsis post-splenectomy with estimates ranging from 3.2% overall (20), 4.4% in children <16 years, higher in those aged <5 years (10.4%) and 0.9% in adults (21). In a long term follow-up of 8149 American veterans who had undergone splenectomy, the infection risk was still significantly increased more than 10 years after splenectomy(22). In a recent 2016 study which included 52 patients with overwhelming post splenectomy infection (OPSI), these episodes occurred a median of 6 years after splenectomy (23).

Indications for splenectomy may also play a part in decision making for appropriate post-splenectomy management. The incidence of infection and mortality post-splenectomy was highest among patients with underlying thalassemia major, haematological malignancies and sickle-cell anaemia compared with those having post-traumatic splenectomy (20).

Minor infections appear to be common (24). While infections not requiring hospitalisation are unlikely to be associated with significant morbidity and mortality, this finding illustrates the importance of appropriate patient and prescriber education.

Management recommendations

1. Patients should receive information about the risk of sepsis and strategies to minimise risk

This article is protected by copyright. All rights reserved.
It is paramount that patients with asplenia/hyposplenism and their families know about their increased lifelong risk of bacterial infections and the recommended prevention strategies. The most common causative organisms implicated in fulminant sepsis remain the encapsulated bacteria especially *Streptococcus pneumonia* and *Neisseria meningitis*. Infection with *Haemophilus influenza* type b (Hib) is now less common since the advent of routine vaccination. Families should be educated about: recognising early symptoms of a bacterial infection; have and know when to take their emergency supply of antibiotics; and the importance of seeking prompt medical review when unwell.

El-Alfy et al (25) demonstrated that those patients with asplenia/hyposplenism who have the best knowledge concerning sepsis had the lowest incidence of this outcome. Clinical registries are a potential cost effective means of preventing OPSI (24). Patients who live in the Australian states of Queensland, Tasmania or Victoria can register (funded by Departments of Health in these states) with Spleen Australia (26), receive an education kit and reminders. The Spleen Australia website also includes printable vaccination guides for health practitioners and patients which can be accessed at no cost. In addition, a smartphone application, linked to the Spleen Australia database, exists to assist with health record maintenance and includes key education points for registered patients.

2. **Patients should receive antibiotic prophylaxis**

Please refer to table 2 for current antibiotic prophylaxis recommendations. The optimal duration of antibiotic prophylaxis is controversial. The most conservative existing guidelines (4) recommend lifelong antibiotics and there is good evidence that the increased risk of sepsis is also life-long. A recent US paper suggests that 12 months may be adequate particularly in populations with herd immunity for vaccine preventable diseases (10). Nevertheless recommendations might need to be refined if an individual patient expresses difficulties or uncertainties about taking prophylactic antibiotics long-term. As a minimum we would recommend antibiotic prophylaxis for adults for at least three years after splenectomy and for all children with asplenia or hyposplenism up to the age of five.

Lifelong prophylaxis should be considered in patients with asplenia/hyposplenism who are immunosuppressed, have had an episode of severe sepsis or undergone splenectomy for a haematological disorder or malignancy especially if they require ongoing immunosuppression (7). Lifelong prophylaxis is also reasonable in hyposplenic patients with additional conditions that may impair their immune response to standard vaccination e.g. HIV infection. The role of age-related immune senescence may also factor into decisions about life-long prophylaxis. In all cases patient
education should rigorously reinforce the necessity of early presentation to medical care when unwell, when to administer emergency antibiotics and maintaining vaccination status.

A recent Cochrane review affirms the role of penicillin in reducing the risk of pneumococcal infection in children(27). This Cochrane review identified several unknowns, including the potential impact of the emergence of drug-resistant \textit{S. pneumoniae} on the effectiveness of antimicrobial prophylaxis and the ideal age for safely withdrawing penicillin. Failures of antibiotic prophylaxis have been reported so patients should be warned that prophylaxis reduces but does not eliminate the risk of sepsis.

Dental procedures do not require additional antibiotic cover unless the patient has an associated medical condition (7). Patients undergoing surgery may be at an increased risk of post-operative infections (28) and therefore the usual perioperative antimicrobial prophylaxis should be given.

3. \textit{Patients should have an emergency antibiotic supply}

Patients should have an emergency antibiotic supply (Table 2) irrespective of prophylaxis, with instructions to take in the event of any sudden onset of unexplained fever, malaise, chills or other constitutional symptoms. Emergency antibiotics are a temporising measure only and urgent medical attention should always be sought. Patients should be diligent in checking the expiry dates on the packets of their emergency supply of antibiotics.

4. \textit{Patients should be vaccinated against pathogens associated with OPSI}

Vaccines against encapsulated organisms are considered to be both safe and generally effective at preventing OPSI. The most common vaccine preventable infections are invasive pneumococcal and meningococcal sepsis. Patients choosing not to receive the recommended additional vaccines need to be counselled about their risk of not optimising an important infection prevention strategy.

Table 4. Summarises the current Spleen Australia vaccination recommendations for adults. For more detailed adult recommendations and the recommended primary vaccinations for patients undergoing embolisation, refer to Spleen Australia website (www.spleen.org.au).

The majority of people with asplenia or hyposplenism on the Spleen Australia registry are adults. Recommendations for children with asplenia and hyposplenism and adult patients who are partially vaccinated can access the up-to-date vaccine recommendations on the Spleen Australia website (https://spleen.org.au/VSR/information.html).
If a patient has a bleeding disorder and there is concern about giving vaccinations, consultation with the person’s physician or a haematologist is recommended.

Timing of vaccination

Patients having an elective splenectomy should ideally commence vaccination at least seven to fourteen days prior to the procedure. The optimal timing for receipt of vaccine following emergency splenectomy remains uncertain. There is evidence that vaccine responses to the 23 valent pneumococcal polysaccharide vaccine (23vPPV) are the same at day 14 and 28 following splenectomy as in healthy adults (29). However functional antibody responses were significantly higher when 23vPPV was given 14 days following splenectomy compared with day seven. Responses to newer conjugate vaccines in relation to the timing of splenectomy are not yet known. The uncertainty in the effectiveness of early vaccination may need to be balanced against the risk of loss to follow up following hospital discharge in each individual.

In the setting of planned immunosuppression, chemotherapy or radiotherapy, if possible vaccinations should be commenced no later than 2 weeks before immunosuppressive therapy and/or delayed at least 3 to 6 months after chemotherapy or radiotherapy or until adequate immunological function. Discussion with patient’s specialist physician is recommended.

In adults all recommended vaccines can be given at the same time at different injection sites. The same applies for children with the exception of 13 valent pneumococcal conjugate vaccine (13vPCV) and influenza vaccine which should be given 3 days apart in those ≤ 4 years old owing to concerns about increased risk of febrile convulsions (30).

Although the WHO has set out a serotype specific IgG level of ≥0.35ug/ml (4) as indicative of protection for pneumococcal infection in young children receiving the conjugate vaccine, the effectiveness (and cost-effectiveness) of re-vaccination based on antibody levels has not been established and is not currently recommended. A study of 145 patients with asplenia demonstrated strong serological responses to 7 valent pneumococcal conjugate vaccines (7vPCV). However, post-vaccine pneumococcal sepsis was nonetheless diagnosed in 3.3% of splenectomised survivors suggesting that vaccination alone cannot be relied upon as a preventive measure (31).

a. Pneumococcal vaccination recommendations

The commonly used vaccines in Australia and New Zealand are outlined in Table 3. 13vPCV has superseded both the 7 valent and 10 valent formulations. The 13vPCV is more immunogenic in children, especially those less than two years old. Compared with the 23vPPV, it provides better T-
cell mediated immune memory, avidity maturation of elicited antibody, mucosal immunity and herd immunity (32). In children, pneumococcal vaccination should follow the national schedule; with additional doses recommended (6, 11, 12, 30).

For adults 13vPCV is a once only vaccine and currently no boosters are recommended. Three doses of 23vPPV are recommended in a patient’s lifetime: initial dose, the second dose (first revaccination) is recommended at 5 years, and a third dose (second revaccination) to be given at 65 years or >50 years in the indigenous population. If asplenia is diagnosed at an age >65 years (>50 years in the indigenous population) then 3 doses of 23vPPV should be given 5 years apart. If 23vPPV is due and the patient has not had a 13vPCV previously, then give 13vPCV first and then 8 weeks later administer a 23vPPV.

There are some data to suggest that giving 13vPCV before 23vPPV results in higher antibody titres (10). It has been proposed that antibodies generated to 23vPPV could potentially bind to 13vPCV antigens impairing the immune response. Therefore it is advised that if 23vPPV is inadvertently given before a dose of 13vPCV, subsequent dose of 13vPCV must be given > 12 months after the dose of 23vPPV.

b. Meningococcal vaccination recommendations

Currently available vaccines include the conjugate meningococcal C (MenCCV), polysaccharide meningococcal vaccines (4vMenPV), conjugate quadrivalent meningococcal vaccines (4vMenCV) and new multi-component peptide based meningococcal Group B vaccine (MenBV). MenBV is currently not licensed in NZ.

The 4vMenCV and the MenBV vaccines are recommended, two doses of each vaccine eight weeks apart. 4vMenCV and MenBV can be given at the same time. Booster doses of 4vMenCV vaccine have been recommended every 5 years. No booster doses of MenBV are presently recommended. The quadrivalent meningococcal conjugate vaccines (4vMenCV) have replaced both the meningococcal polysaccharide (4vMenPV) and C conjugate vaccines (MenCCV).

The available 4vMenCV vaccines are only licensed in patients up to 55 years and MenBV vaccine up to 50 years. Despite the lack of studies, Spleen Australia recommends the use of 4VMenCV vaccines for patients >55 years and MenBV for those >50 years due to the increased risk of meningococcal disease.
The dosing strategy, vaccine used and minimum interval for administering meningococcal vaccination in paediatrics is dependent on the patient’s age at the time of diagnosis (6, 11, 30).

Due to a reported high incidence of febrile reactions it is advised that children under the age of two receive a prophylactic dose of paracetamol within 30 minutes of MenBV, and can be followed by 2 more doses of paracetamol, given 6 hours apart. MenBV may be administered at the same time as other vaccinations in the national immunisation schedule but must be given at a separate injection site. Refer to the Spleen Australia website for complete paediatric meningococcal vaccine guidance.

c. **Haemophilus influenzae type b (Hib) vaccination**

Hib vaccination is recommended for both children and adults. Children under the age of five who have received all scheduled vaccine doses do not require a booster dose following splenectomy. The current Australian Immunisation Handbook and Spleen Australia do not require a further vaccine if the primary 4 dose course has been administered (6). More conservative guidelines including in NZ recommend that older children and adults should receive a single dose of Hib vaccine at the time of their asplenia diagnosis regardless of their prior Hib vaccine status (4, 11, 12).

Hib vaccine has been demonstrated to be immunogenic in patients following splenectomy, although the immune response was significantly reduced compared with normal controls (33), and antibody levels declined more rapidly in splenectomised patients.

d. **Influenza vaccination.**

Inactivated influenza vaccine is recommended annually for patients with asplenia/hyposplenism over six months of age and is publicly funded in Australia. It is assumed that prevention of influenza will lessen the risk of secondary bacterial infection, including pneumococcal infection. It is recommended that children under the age of nine and immunosuppressed adults with asplenia/hyposplenism who have not received an influenza vaccine previously should receive two doses of influenza vaccine four weeks apart in their first year of receiving influenza vaccine. A single annual dose is recommended thereafter (6, 30).

5. **Patients who travel overseas should receive specialist advice**

Patients should be aware of the risk of severe malaria and take optimal precautions to prevent infection by means of antimalarial prophylaxis, mosquito repellents and other barrier precautions. In keeping with current immunisation recommendations travellers with asplenia or hyposplenia should have the quadrivalent meningococcal conjugate vaccine (4vMenCV) when travelling to high risk
areas e.g. Sub-Saharan Africa or carrying out the Hajj pilgrimage where multiple meningococcal serotypes circulate. Asplenia/hyposplenism in its own right is not a contraindication for any vaccine however live vaccines may be contraindicated because of an underlying medical condition (6, 12). Specialist advice should be sought regarding risks associated with endemic and emerging infectious diseases such as non typhoidal salmonella and Zika Virus. We recommend that patients seek expert travel advice at least 4 weeks prior to overseas travel.

6. **Patients who are scratched or bitten by animals should receive antibiotics**

There is an increased risk of severe sepsis in patients with asplenia or hyposplenism who are scratched or bitten by animals. Dog bites in particular are associated with severe sepsis due to *Capnocytophaga canimorsus*. Such patients should be warned of this risk, informed to apply an antiseptic agent to puncture site and have adequate antibiotic cover following such bites e.g. amoxycillin/clavulanic acid for 5 days. Patients allergic to penicillins can use a combination of clindamycin plus ciprofloxacin.

7. **Systems should exist to improve adherence to preventive measures**

The medical history should be marked with an alert sticker and a checklist should be included in that history outlining date, type, dose of vaccines and when the next vaccination is due. Anatomical pathologists are encouraged to include a comment on their histology reports on the risk of fulminant sepsis when a spleen is processed, as should a haematologist when HJB are detected.

Registries of patients with asplenia and hyposplenism have been both reported and recommended (34, 35). The potential role of such ongoing registries is to ensure that patients (and their carers) are given optimal and up-to-date preventive advice, and that they receive long term ongoing support, such as reminders when re-vaccinations are due and any new advances in medical care. A registry can also collect important long-term data, may be the vehicle for studies on the long term efficacy of recommended interventions and is likely to prove cost effective in terms of mortality and rates of OPSI avoided.

Spleen Australia provides: educational materials including alert cards, follow up of patients with regular reminders about recommended immunisation, as well as providing a clinical resource for healthcare providers and patients. While currently only funded to enrol patients in Victoria, Tasmania and Queensland, resources are available on the website. Patients registered with Spleen Australia can also access an App for mobile devices for vaccine reminders and additional health tips.

REFERENCES:

This article is protected by copyright. All rights reserved.

This article is protected by copyright. All rights reserved.

ACKNOWLEDGEMENTS:

This article is protected by copyright. All rights reserved.
We thank the authors of the previous 2008 guidelines including Jim Buttery, Andrew Daley, David Isaacs, Ian Jennens, A Kakakios, Richard Lawrence, Sally Roberts, Adrianne Torda, Ashley Watson, Ian Woolley, Tara Anderson and Alison Street who provided input in these revised guidelines. We also thank Ian Woolley and Paul Cameron for their regular contributions to the running of the registry and Craig Boutlis and Nigel Crawford and Clare Nourse for providing advice and feedback during the development of the current guidelines.

Available resources

Patients concerns and questions should be raised with the treating general practitioner, and/or treating specialist or Spleen Australia. Paediatric guidelines are available on the Spleen Australia website (https://spleen.org.au/VSR/information.html). Currently available funded vaccines for splenectomised individuals in individuals in New Zealand are available on the Immunisation Advisory Centre website http://www.immune.org.nz/sites/default/files/resources/ProgrammeAspleniaImac20160331V01Final.pdf

TABLES:

<table>
<thead>
<tr>
<th>Table 1. What's new</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient clinical service for people without a functioning spleen now operational in Queensland, Tasmania and Victoria</td>
</tr>
<tr>
<td>Antibiotic prophylaxis now recommended for adults for at least three years after splenectomy</td>
</tr>
<tr>
<td>Amoxycillin/clavulanic acid replaces cefuroxime as stand-by antibiotic of choice in children</td>
</tr>
<tr>
<td>13 valent pneumococcal conjugate vaccine (Prevenar 13) supersedes the 7 valent (Prevenar 7*) and 10 valent PCV (Synflorix*).</td>
</tr>
<tr>
<td>Introduction of quadrivalent conjugate Meningococcal C vaccines</td>
</tr>
<tr>
<td>Introduction of Meningococcal B vaccine in Australia</td>
</tr>
<tr>
<td>Link to specific paediatric recommendations and other important resources (via Spleen Australia website)</td>
</tr>
</tbody>
</table>

| Table 2. Recommended antibiotic prophylaxis and emergency management for patients in Australia with asplenia/hyposplenism (6, 7, 26, 30) |
|------------------|------------------|------------------|
| Indication | Antibiotic and dose | Patients allergic to penicillins +# |
| Antibiotic prophylaxis for patients with asplenia and hyposplenism | Adults Amoxycillin 250mg daily or phenoxyethylpenicillin 250mg orally 12 hourly. | Adults Roxithromycin 150mg orally daily or erythromycin 250mg orally daily /erythromycin ethyl succinate 400mg |
Children
Amoxicillin 20mg/kg (up to 250mg) orally daily
or
phenoxymethylpenicillin - child younger than 1 year: 62.5mg; 1 to 5 years: 125mg - orally 12 hourly.

Children^ Erythromycin - child 1 month or older:
10 mg/kg (up to 250mg) orally daily
or
erythromycin (ethyl succinate formulation) child 1 month or older:
10mg/kg (up to 400mg) orally daily
or
roxithromycin 4mg/kg (up to 150mg) orally daily

Emergency antibiotics
Adults
Amoxicillin 3g starting dose orally followed by 1g 8 hourly

Children^ Amoxicillin+clavulanic acid
22.5mg/kg/dose amoxycillin component (max 875mg/dose), orally, twice daily (use DUO preparation)

Children^ Clarithromycin 7.5mg/kg/dose (up to 500mg) orally 12 hourly
or
roxithromycin 4mg/kg (up to 150mg) orally daily

Patients can be referred to specialist for assessment of penicillin allergy

The choice of antibiotics especially in patients with a known allergy to penicillin can depend on: the type of allergy, patient tolerance, comorbidities, local S. pneumoniae antibiotic resistance rates, cost and accessibility. Alternative or second line prophylactic options may include trimethoprim/sulfamethoxazole (co-trimoxazole) or a cephalosporin; an alternative emergency antibiotic includes moxifloxacin in adults.

^ Guidelines for individuals aged under 18 years of age can be found on the spleen Australia website https://spleen.org.au/VSR/files/RECOMMENDATIONS_Spleen_Registry_p.pdf

Table 3. Vaccine types and brand names

<table>
<thead>
<tr>
<th>Pathogen</th>
<th>Vaccine type</th>
<th>Australian trade name</th>
<th>New Zealand trade name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pneumococcus</td>
<td>13 valent pneumococcal conjugate vaccine (13vPCV)</td>
<td>Prevenar 13®</td>
<td>Prevenar 13®</td>
</tr>
<tr>
<td></td>
<td>23 valent polysaccharide pneumococcal vaccine (23vPPV)</td>
<td>Pneumovax 23®</td>
<td>Pneumovax 23®</td>
</tr>
<tr>
<td>Meningococcus</td>
<td>Recombinant multicomponent</td>
<td>Bexsero®</td>
<td>Not available</td>
</tr>
<tr>
<td>Vaccine Description</td>
<td>Brands</td>
<td>Brands</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Meningococcal B vaccine (MenBV)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quadrivalent (A,C,W_{135},Y) meningococcal conjugate vaccine (4vMenCV)</td>
<td>Menactra®</td>
<td>Menactra® (MCV4-D)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Meneo®</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nimenrix®</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meningococcal conjugate C vaccine (MenCCV) **</td>
<td>Meningitec®</td>
<td>NeisVac-C®</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Menjugate®</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NeisVac-C®</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quadrivalent (A,C,W_{135},Y) meningococcal polysaccharide vaccine (4vMenPV)**</td>
<td>Mencevax®</td>
<td>Mencevax®</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Menomune®</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

** These classes of vaccine have been superceded.
Table 4. Vaccines recommended for adults (>18 years) with asplenia/hyposplenism who have not previously been vaccinated

Give initial vaccines 7 – 14 days prior to elective splenectomy of at least 7 days after emergency splenectomy

Verbal consent should be obtained prior to administration of vaccines.

<table>
<thead>
<tr>
<th>Organism prevented</th>
<th>PRIMARY VACCINATIONS</th>
<th>Revaccinations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pneumococcus</td>
<td>Conjugate (Prevenar 13) 0.5mL IM 8 weeks later</td>
<td>Polysaccharide (Pneumovax 23) 0.5mL IM/SC 5 years later</td>
</tr>
<tr>
<td>Meningococcus</td>
<td>Conjugate ACWY (Menveo, Menactra, Nimenrix) 0.5mL IM 8 weeks later</td>
<td>Conjugate ACWY (Menveo, Menactra, Nimenrix) 0.5mL IM 5 years later</td>
</tr>
<tr>
<td></td>
<td>Recombinant B (Bexsero) 0.5mL IM 8 weeks later</td>
<td>Recombinant B (Bexsero) 0.5mL IM No boosters required</td>
</tr>
<tr>
<td>Haemophilus influenzae type b</td>
<td>Conjugate Hib (Liquid PedvaxHIB, Hiberix) 0.5mL IM</td>
<td>- No boosters required</td>
</tr>
<tr>
<td>Influenza</td>
<td>Influenza vaccine</td>
<td>Each year (during flu season)</td>
</tr>
</tbody>
</table>

1 Embolised patients receive only the 23vPPV, one 4vMenCV and Hib as initial vaccines and if appropriate, influenza vaccine. Refer to Spleen Australia website for embolisation guideline.
FIGURES:

Fig 1: Summary of recommendations for persons with asplenia and hyposplenism

- Patients should receive information about the risk of sepsis and strategies to minimise risk
- Patients should be vaccinated against pneumococcal, meningococcal, *Haemophilus influenzae* type b and influenza infections
- Patients should receive antibiotic prophylaxis
- Patients should have an emergency supply of antibiotics and an appropriate action plan in case of illness
- Patients who travel overseas should receive specialist advice
- Patients who are bitten or scratched by animals should seek medical advice and may well require antibiotics
- Systems should exist to improve adherence to preventative measures