Accepted Manuscript

International therapeutic guidelines for patients with HCV-related extrahepatic disorders. A multidisciplinary expert statement

Anna Linda Zignego, Manuel Ramos-Casals, Clodoveo Ferri, David Saadoun, Luca Arcaini, Dario Roccatello, Alessandro Antonelli, Anne Claire Desbois, Cloe Commarmond, Laura Gragnani, Milvia Casato, Peter Lamprecht, Alessandra Mangia, Athanasios G Tzioufas, Zobair M Younossi, Patrice Cacoub

PII: S1568-9972(17)30057-5
DOI: doi:10.1016/j.autrev.2017.03.004
Reference: AUTREV 1983

To appear in: Autoimmunity Reviews

Received date: 19 February 2017
Accepted date: 26 February 2017

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Anna Linda Zignego, Manuel Ramos-Casals, Clodoveo Ferri, David Saadoun, Luca Arcaini, Dario Roccatello, Alessandro Antonelli, Anne Claire Desbois, Cloé Commarmond, Laura Gragnani, Milvia Casato, Peter Lamprecht, Alessandra Mangia, Athanasios G Tzioufas, Zobair M Younossi, and Patrice Cacoub, on behalf of the ISG-EHCV

Authors affiliations:
Anna Linda Zignego, MD, Laura Gragnani PhD: Interdepartmental Center for Systemic Manifestations of Hepatitis Viruses (MaSVE), Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
Manuel Ramos-Casals, MD: Department of Autoimmune Diseases, ICMID Josep Font Autoimmune Lab, CELELEX-IDIBAPS, Hospital Clinic, Barcelona, Spain
Clodoveo Ferri, MD: Chair and Rheumatology Unit, Medical School, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria, Policlinico di Modena, 41124 Modena, Italy
Luca Arcaini, MD: Department of Molecular Medicine, University of Pavia & Department of Hematology Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
Dario Roccatello, MD: Center of Research of Immunopathology and Rare Diseases, and Nephrology and Dialysis Unit, San G. Bosco Hospital and University of Turin, Italy
Alessandro Antonelli, MD: Department of Clinical and Experimental Medicine, University of Pisa, Via Savi 10, Pisa 56126, Italy
Milvia Casato, MD, Department of Clinical Medicine, Sapienza University of Rome, Viale dell’Università 37, 00185 Rome, ITALY.
E-mail: milvia.casato@uniroma1.it
Peter Lamprecht, MD, Klinik für Rheumatologie Oberarzt Ratzburger Allee 160 (Haus 40) • 23538 Lübeck, GERMANY.
Tel.: ++49 (0)451 500 2368 • Fax: ++49 (0)451 500 3650 E-mail: peter.lamprecht@uksh.de
Alessandra Mangia, MD, Liver Unit, IRCCS “Casa Sollievo della Sofferenza”, San Giovanni Rotondo, ITALY. a.mangia@tin.it
Athanasios G Tzioufas, MD, Director Department of Pathophysiology School of Medicine University of Athens 75 M. Asias st, Building 16, Room 32 11527 Athens-GREECE GREECE E-mail: agtz@med.uoa.gr
Zobair M Younossi, MD: Center for Liver Diseases, Department of Medicine, Inova Fairfax Hospital; Beatty Liver and Obesity Program, Betty and Guy Beatty Center for Integrated Research, Inova Health System, Falls Church, VA, USA
David Saadoun, MD, Anne Claire Desbois, MD, Cloé Commarmond, MD, Patrice Cacoub, MD: Sorbonne University, UPMC Univ Paris 06, UMR 7211, and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Paris, France: INSERM, UMR S 959, Paris, France: CNRS, FRE3632, Paris, France: AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Department of Internal Medicine and Clinical Immunology, Paris, France

Corresponding author:
Prof. Anna Linda Zignego, Interdepartmental Center for Systemic Manifestations of Hepatitis Viruses (MaSVE), Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, 50134 Florence, Italy
Email: annalinda.zignego@unifi.it
ABSTRACT

Hepatitis C virus (HCV) is both hepatotrophic and lymphotropic virus that causes liver as well extrahepatic manifestations including cryoglobulinemic vasculitis, the most frequent and studied condition, lymphoma, and neurologic, cardiovascular, endocrine-metabolic or renal diseases.

HCV-extrahepatic manifestations (HCV-EHMs) may severely affect the overall prognosis, while viral eradication significantly reduces non-liver related deaths.

Different clinical manifestations may coexist in the same patient. Due to the variety of HCV clinical manifestations, a multidisciplinary approach along with appropriate therapeutic strategies are required. In the era of interferon-free anti-HCV treatments, international recommendations for the therapeutic management of HCV-EHMs are needed. This implies the need to define the best criteria to use antivirals and/or other therapeutic approaches. The present recommendations, based on qualified expert experience and specific literature, will focus on etiological (antiviral) therapies and/or traditional pathogenetic treatments that still maintain their therapeutic utility.

Highlights

1. HCV causes EHMs, mostly of autoimmune/lymphoproliferative nature
2. IFN-free AVT should be considered in HCV-EHMs
3. AVT is a first line option in HCV-LPDs not needing urgent-life threatening measures
4. Recommendations based on expert experience and specific literature are needed
Key words

Hepatitis C virus (HCV), extrahepatic manifestations of HCV, anti-HCV therapy, non-etiological therapy

Abbreviation list:

HCV = Hepatitis C virus

HCV-EHMs = HCV-extrahepatic manifestations

IFN = Interferon

CV = Cryoglobulinemic Vasculitis

AVT = Antiviral Therapy

Peg-IFN = Pegylated Interferon

RBV = Ribavirin

DAAs = Direct-Acting Antiviral Agents

FDA = Food and Drug Administration

ISG-EHCV = International Study Group of Extrahepatic Manifestations Related to Hepatitis C Virus Infection

LPD = Lymphoproliferative Disease

CGs = Cryoglobulins

RF = Rheumatoid Factor

MC = Mixed Cryoglobulinemia

CNS = Central Nervous System

SVR = Sustained Virological Response

NHL = Non-Hodgkin Lymphoma

CTX = Cyclophosphamide

RTX = Rituximab

NSAIDs = Non-Steroidal Anti-Inflammatory Drugs

GN = Glomerulonephritis
MZL = Marginal Zone Lymphoma

DLBCL = Diffuse Large B Cell Lymphoma

WM = Waldenstrom's macroglobulinemia

ESMO = European Society for Medical Oncology

NCCN = National Comprehensive Cancer Network

EASL = European Association for the Study of the Liver

R-CHOP = Rituximab Cyclophosphamide Doxorubicin (Hydroxydaunomycin) Vincristine (Oncovin) Prednisone

CKD = Chronic Kidney Disease

MPGN = Membrano-Proliferative Glomerulonephritis

GBM = Glomerular Basement Membrane

KDIGO = Kidney Disease Improving Global Outcomes

HRQOL = Health-Related Quality Of Life

TNF = Tumor necrosis factor

IL = Interleukin

MRI = Magnetic Resonance Imaging

SF-36 = Short Form 36

PROs = Patient-Reported Outcomes

PCT = Porphyria Cutanea Tarda

URO-D = Uroporphyrinogen Decarboxylase

LP = Lichen planus

HLA-DR = Human Leukocyte Antigen - antigen D Related

LFTs = Liver Function Tests

T2DM = Type 2 Diabetes Mellitus

AbTG = Anti-Thyroglobulin Antibody

AbTPO = Anti-Thyroid Peroxidase Antibody

ATMA = Anti-Thyroid Microsomal Antibody
Funding: This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.
1. INTRODUCTION

1.1. EXTRAHEPATIC MANIFESTATIONS OF HCV

HCV is a world-wide diffused linear, single-stranded RNA virus which displays both hepatotropism and lymphotropism and may cause hepatic and extrahepatic manifestations (HCV-EHMs). HCV-EHMs include many diseases with B-lymphoproliferative and/or autoimmune the most documented and frequent [1]. The recent availability of mortality rates in large cohorts of subjects confirmed the association of HCV infection with many extrahepatic pathological conditions including cardiovascular, neurologic, metabolic or renal diseases and extra-hepatic tumors [2-9]. The comparison between patients with persisting HCV infection and those who cleared the virus, showed that viral eradication significantly reduced the rate of extra-hepatic deaths [2, 5, 10, 11].

HCV-EHMs can be classified according to the number and strength of supporting scientific data, as well as the underlying etio-pathogenic process [12].

The correct approach to patients with HCV-EHMs requires a multidisciplinary management. Specialists of different medical areas challenging with specific HCV-EHMs should take into account the pathogenetic role of HCV in different underlying pathological processes. This arises the need to define the best criteria to use antivirals and/or other therapeutic approaches previously standardized for virus-unrelated disease variants with comparable pathogenetic process. International, multidisciplinary recommendations for the therapeutic management of HCV-EHMs in the era of Interferon (IFN)-free anti-HCV treatment are needed. Therefore, this paper will mainly focus on the effects of new (IFN-free) and old (IFN-based) anti-HCV treatments as well as non-viral therapies on the different HCV-EHMs.

Different manifestations, being caused by the same etiologic agent, often coexist in the same subject. Most of available information is derived from studies carried out in
patients suffering from cryoglobulinemic vasculitis, CV, the prototype of systemic HCV-EHMs that will be considered for first. Then, the main organ-specific disorders (detectable or not in patients with CV) for which enough data are available will be better detailed, in order to give, for each condition, a picture based on different and complementary focuses and the most appropriate therapeutic approach.

1.2. ANTI-HCV THERAPY: OLD AND NEW

The introduction of the first, IFN-based, antiviral therapy (AVT), led to positive effects on several HCV EHMs, improving survival rates [13-17]. However, this treatment, even in its most effective combination (Pegylated(Peg)-IFN plus Ribavirin –RBV-), had limited efficacy. AVT options have been recently expanded with the introduction of direct-acting antiviral agents (DAAs), that directly target non-structural proteins with a key role in HCV replication.

In 2011, the US Food and Drug Administration (FDA) approved the first generation of HCV NS3 protease inhibitors -also known as ”-previrs”-. These molecules block the catalytic site of NS3, preventing the poly-protein cleavage and thus HCV replication. Currently approved ”-previrs” include telaprevir and boceprevir (first wave), and simeprevir, paritaprevir and grazoprevir (second wave).

Two different classes of second wave DAAs have been introduced, the NS5A and the NS5B inhibitors. The NS5A inhibitors block the stage of membranous genesis; they are also known as ”-asvirs” (daclatasvir, ledipasvir, ombitasvir, elbasvir, velpatasvir). The NS5B polymerase inhibitors or ”-buvirs”, include nucleos(t)ide analogs (sofosbuvir) acting as chain terminators within the polymerase catalytic site, and non-nucleotide inhibitors (dasabuvir), causing conformational changes and making the polymerase ineffective. The first generation of DAAs needed the combination of Peg-IFN and RBV and prolonged treatments, while the currently available therapeutic schedules are based on different IFN-free (sometimes RBV free) DAA combinations, with shorter therapy duration.
(generally 12 to 24 weeks), minimal side-effects (Table 1) [18], and efficacy approaching 100% [18]. The correct choice of these regimens takes into account virus-related features (i.e., HCV genotype/subtype) and/or host-related features (i.e., presence/absence of severe liver disease, low creatinine clearance, drug-drug-interactions). These new drugs are providing the opportunity for a dramatic change in the anti-HCV therapeutic approach, eradicating HCV with high efficacy without IFN related side effects. Main international guidelines are in agreement on the opportunity to recommend AVT to all HCV infected patients without a short lifetime expectancy (i.e., http://www.hevguidelines.org/full-report-view). However, universal treatment may not be scaled up in many countries for lack of financial resources and/or of health care infrastructure and indications to prioritization concerning some HCV-EHMs, essentially based on increased risk of mortality and morbidity have been defined (http://www.easl.eu/research/our-contributions/clinical-practice-guidelines/detail/easl-recommendations-on-treatment-of-hepatitis-c-2016 and http://www.who.int/hiv/pub/hepatitis/hepatitis-c-guidelines/en/ ; Table 2).

2. METHODS
The production of therapeutic guidelines for HCV-EHMs was conceived and organized by the International Study Group of Extrahepatic Manifestations Related to Hepatitis C Virus Infection (ISG-EHCV), which is a multidisciplinary international network of recognized experts in this field. In order to provide an homogeneous therapeutic approach to patients with HCV-EHMs, the ISG-EHCV convenor and co-convenors invited other ISG-EHCV members on the basis of their well-known expertise in the field of each HCV-related manifestation. This task force initially gathered via e-mail and successively via teleconference meetings for the discussion of different issues. A systematic review of the literature specifically correlated to the different HCV-EHMs was done, representing the backbone of the paper [19].
3. RESULTS: THERAPEUTIC APPROACH TO THE SINGLE HCV-EHMs

The first, essential step for a correct therapeutic approach to HCV EHMs is represented by an accurate general assessment of patients and diagnosis of single HCV-EHMs, as previously described [19].

The therapeutic approach to the main HCV-EHMs are described in the following paragraphs by starting with the CV; since the majority of the studies are focused on patients with CV, this systemic disorder represents a precious model for the analysis of the effects of etiologic therapy on HCV EHMs.

3.1. CRYOGLOBULINEMIC VASCULITIS (CV)

CV is the most frequent and largely investigated HCV-EHM [1, 12, 20, 21]. A detailed and complete description of this complex disease, in its different aspects, will be the object of a dedicated paper by our study group (see Saadoun et al, manuscript in preparation). In the present paper, the essential aspects justifying the most opportune therapeutic approach will be considered.

CV is a both autoimmune and lymphoproliferative disease (LPD), clinically benign (although sometimes with a severe presentation), but possibly evolving into lymphoma [20, 22-24]. The pathological substrate of CV is the HCV-driven B-cell lymphoproliferation and the consequent production of cryo- and non-cryoprecipitable immune complexes, in turn responsible for vasculitic manifestations. Mixed cryoglobulins (CGs) are immune complexes that reversibly precipitate when the temperature is lower than 37°C [12, 22, 25, 26] and that consist of IgM with rheumatoid factor (RF) activity [mono- or oligo-clonal in type II mixed cryoglobulinemia (MC), or polyclonal in type III MC] and polyclonal IgGs [27]. Most CV patients are HCV positive (70–90%) and conversely 40–60% of HCV infected patients produce CGs of whom 5–30% with symptomatic CV [12, 22, 25, 26]. Since HCV infects about 170 million individuals worldwide, the number of patients at risk for developing CV is substantial. The syndrome
is characterized by the typical clinical triad - purpura, weakness, and arthralgias -, low complement C4 fraction serum level and various visceral organ involvement, including renal, neurological, cardiac or digestive disease. According to the vasculitis severity, patients may manifest mild/moderate disease (i.e., purpura, articular involvement, mild sensory neuropathy), severe disease (i.e., extensive/ulcerative skin disease, severe sensory-motor neuropathy, glomerulonephritis with impaired renal function, gastrointestinal involvement) or life-threatening conditions (i.e., rapidly progressive glomerulonephritis, CNS involvement, intestinal ischemia, alveolar hemorrhage).

3.1.1 Etiologic treatment

IFN-based AVT

After the first, pioneering studies using recombinant IFNa in 1993 [13, 28-30], AVT followed the evolution of hepatitis C treatment with some differences (i.e., in the drug doses/duration, combination with non-viral therapies) (Table 3), essentially due to the possible side-effects of IFN and/or RBV therapy (i.e. IFN neurotoxicity and myelo-inhibitory action and RBV hemolytic effects). The main steps in IFN-based AVT were represented by IFN monotherapy, its combination with RBV, and the combination of pegylated-IFN (PegIFN) and RBV that represented the standard of care for about fifteen years. The virological and clinical results progressively improved, but not the type or rates of side-effects. Clinical remission was clearly correlated with virological response (sustained virological response –SVR–: prolonged negative viremia), although with some discordant data [31-36], including the persistence of CV in rare patients with SVR. However, this rare situation was generally transient or related to severe sequela of CV or the presence of a B-cell NHL. Possible explanations included the evolution to a late stage when the B-cell proliferation became independent from the etiologic agent, with persistence of the pathogenetic B-cell clone expansion and the evolution to overt lymphoma (see Figure 1). Also, a too advanced tissue damage could affect a full
functional restoration, for example for a severe sensory-motor peripheral neuropathy. Therefore, a prompt and early HCV eradication was reputed essential. The complexity of such autoimmune/lymphoproliferative disorder suggested a sufficiently long follow up after HCV eradication to evaluate its real effects on CV symptoms. In a prospective and controlled study including more than 400 HCV infected patients with/without CG and with/without CV, after a mean follow-up of 8 years, all CV symptoms persistently disappeared in 57% of SVR patients; some signs and/or symptoms persisted in the remaining patients, although improved. All virological non-responders were also clinical non-responders, despite of a transient improvement in some cases. Furthermore, the CG was a negative prognostic factor of virological response [17]. In consideration of all available data, the IFN-based AVT was recommended as the first-line option in mild to moderate CV [37].

The introduction of first-generation DAAs that were associated to Peg-IFN and RBV increased SVR rates, but also the side-effects. Saadoun et al described their safety and efficacy in 30 CV patients [38], where 67% of patients were complete clinical and virological responders while severe side effects occurred in 47%. Another study confirmed the good efficacy of such combination in 22 cryoglobulinemic subjects, with a CG disappearance in 86% but a lower SVR rate in cryoglobulinemic patients than in patients without mixed cryoglobulinemia (23.8% vs 70%, \(p=0.01 \)) [39]. Stine et al. in small case series of CV patients treated with triple AVT (Peg-IFN plus RBV plus sofosbuvir or first generation DAAs) suggested a longer treatment for cirrhotic patients, apparently more refractory to clear CGs [40, 41].

Interferon-free AVT (Table 4)

Limited, but essentially concordant data, are available regarding patients with CV. The first study reported the effects of a sofosbuvir/RBV combination for 24 weeks in 24 CV patients [42]; SVR was scored in 74% patients, with high rate of clinical response (87%) and low rates of serious adverse events [42]. The rate of SVR was that expected from
used AVT protocols. Sise et al., using sofosbuvir-based combinations in 12 CV subjects, obtained an improvement in renal function with or without immunosuppressant and SVR12 in 83% [43]. An interim analysis, mostly based on the combination of paritaprevir/ritonavir, ombitasvir, plus dasabuvir, showed a cryocrit decrease and a clinical response even during treatment [44]. The clinical improvement rate gradually increased from the inhibition of viral replication, end of treatment and SVR12 [45]. A very recent prospective study assessed efficacy and safety of sofosbuvir-based individually tailored therapy, in a cohort of 44 consecutive CV patients (median after treatment follow-up: 42 weeks, range 27-53)[46]. All patients obtained viral eradication and an overall 100% rate of clinical (complete or partial) response at week 24 post-treatment. Interestingly, a progressive increase of complete response rate over time, confirmed previous, preliminary observations. This is also suggested by another recent study conducted on 64 patients with circulating CGs (35/64 with CV) mostly treated in IFN-free regimens [47]. Recently, Hegazy et al. described a cohort of Egyptian and Italian CV subjects [48] and Kondili et al. reported results of a nationwide Italian study, showing the disappearance or improvement of more than 50% of CV symptoms in 31/37 (84%) patients after DAA [49]. Available data suggest that IFN-free AVT is safe, generally well tolerated and effective in CV patients.

3.1.2 Non-etiologic treatment

The non-etiologic therapy of CV remains useful for severe patients before and during AVT, and sometimes after AVT for patients with persistent symptoms. However, it is not recommended as maintenance therapy after complete symptom remission, even when cryocrit, abnormal RF and/or complement levels are still altered.

This approach is usually based on anti-inflammatory drugs [i.e., glucocorticosteroids (GCs)], immune-suppressants [i.e., cyclophosphamide (CTX)], azathioprine, biological drugs [rituximab (RTX)], and analgesics, including non-steroidal anti-inflammatory drugs
(NSAIDs). Furthermore, low-antigenic diet and apheresis can be helpful to decrease serum CGs levels, particularly in case of renal involvement. These measures should be used considering the potential effects on viral replication and liver damage; the administration during DAA therapy, requires a mandatory evaluation of the drug-drug interactions.

GCs are commonly used to control inflammation and pain [50-55]. Low-medium doses of GCs (0.1-0.5 mg/kg/day) usually control mild to moderate symptoms, whereas high-dose pulse therapy (1–10 mg/kg) is commonly indicated to manage severe and acute conditions, specifically renal failure, neurologic manifestations or hyperviscosity syndrome [37, 50, 51, 56]. The risk of multiple side-effects should be considered in case of GCs long-term administration [51-53, 57]. In particular, in case of severe liver damage, the effects on viral replication, electrolyte balance (ascitic decompensation) and lipid metabolism (liver steatosis), have to be evaluated. The prolonged treatment with GCs, although common in clinical practice, has preferably to be avoided or at least reduced.

Colchicine has been used as steroid-sparing agent to reduce Ig secretion [58, 59]. It could have favorable transient effects on purpura, weakness, and leg ulcers when administered at dose of 1 mg/day for 6–48 months. The use is limited by the risk of gastrointestinal side-effects [58]. The **low-antigen-content diet** was reputed to restore phagocyte activity and modify the composition of circulating immune-complexes. In mild to moderate CV, this diet was shown to reduce symptoms and laboratory signs [37, 60]. Although it is still matter of debate, its use has been proposed as a supportive treatment for all symptomatic patients [55]. **Analgesic drugs** and **NSAIDS** are used to obtain a relief and reduce the GCs administration, especially in patients with peripheral neuropathy. Acetaminophen, gabapentin or pregabalin, opioids, and amitriptyline are the most used. The analgesics and NSAIDS administration is tailored on specific CV symptoms and on liver disease degree (especially for NSAIDs and benzodiazepines).
Other approaches have been shown to be very effective in severe CV; among them, Rituximab (monoclonal antibody against the B-cell specific CD20 antigen) has a prominent role [41, 61]. RTX binding to CD20 causes a B-lymphocytes depletion thus justifying the extensive use in B-lymphoproliferative disorders and severe autoimmune diseases. The safety and efficacy of RTX monotherapy in CV were clearly shown [62-81]. RTX is especially recommended in case of HCV related CV with severe clinical manifestations, preferring it to more conventional treatments. RTX can improve various manifestations of CV, including skin symptoms (purpura and ulcers) [62, 63, 65], fatigue, arthralgias/arthritis, glomerulonephritis (GN) and, peripheral neuropathy in a relevant number of cases (75-90%) [62, 63, 65-67, 75], including some life-threatening complications such as hyper-viscosity syndrome [37, 62-81] or gastrointestinal vasculitis [69-71]. It has been reported that RTX is able to restore some CV-related immune abnormalities; it can decrease cryocrit, improve RF and C4 levels [82], and induce the disappearance of bone marrow B cell clonal expansion. Furthermore, RTX has a steroid-sparing effect [62, 66, 83]. Most studies used the standard hematological treatment schedule (375mg/m\(^2\) in four consecutive weekly infusions). Lower doses and/or shorter treatment have been also reported, i.e., 1g every two weeks for two infusions or 250 mg/m\(^2\) in two administrations [81].

Since RTX is not active on B-cell progenitors, the effect is transitory with variable duration of the clinical effect (from 3-4 months to more than 12 months); long-term responses usually prevail. Before IFN-free AVTs, repeated treatments [62, 65, 66, 69] and maintenance regimens were necessary, especially in patients with nephritis or severe abdominal vasculitis [66, 68, 69], because RTX has only a transitory effect and the viral trigger (HCV) was still present. The relationship between etiologic treatment and RTX is of interest. In the IFN era, most studies on RTX have been performed on patients who had failed or were not eligible for AVT, even if some authors suggested a combined RTX plus AVT in patients with severe manifestations (generally using RTX before AVT) [32, 66,
The effect of RTX treatment made eligible to IFN-based AVT some previously excluded patients [78]. In two controlled clinical trials, the combination of RTX with AVT showed a synergistic effect [70, 82, 84], being more effective in CV manifestations than AVT alone, particularly when a kidney involvement was present [85, 86]. The AVT after RTX compared with RTX alone increased the relapse-free survival [87, 88]. In most studies the combination was sequential, starting with RTX or AVT depending on the condition of the patient while, in some others, both therapies were administered concomitantly.

Data about combined RTX plus DAA-based therapy are still scarce [41, 61]. However, it is conceivable to figure out promising successes of combination with IFN-free schedules. The exact place of RTX in the field of CV has to be more precisely defined. With the approval of recent DAAs IFN-free combination, which proved very highly and rapidly effective on viremia, we will have to define in the next future the remaining place of RTX. For example, as a first-line option for severe and life-threatening conditions needing urgent intervention and a second-line option for those maintaining significant symptoms after SVR.

3.2. LYMPHOMA

In 1994, a high prevalence of HCV infection in Italian patients with lymphoma was first reported in limited cohort of patients [89, 90]. In the last two decades, several evidence proved the association between HCV infection and the occurrence of hematologic malignancies, mostly B-cell non-Hodgkin’s lymphoma (B-NHL) [91, 92]. A clear gradient of HCV-related lymphoma from North to South was also shown as for HCV infection [1, 93]. Dedicated meta-analyses were able to confirm (although with different degrees), an increased risk of lymphoma in HCV infected subjects [92, 94-97]. A confirmation derived also from the highly significant reduction in the lymphoma risk found as a result of
sustained viral eradication [10, 17]. This also suggested that AVT could represent a preventive measure for the development of lymphoma.

The association did not involve a specific histopathological type of B-NHL, although some of them appear more frequently related to HCV infection. HCV was initially linked to indolent NHL, then the association with aggressive subtypes was also shown. Marginal Zone (MZL), Diffuse Large B Cell (DLBCL) and Lymphoplasmacytic lymphomas (Waldenstrom’s macroglobulinemia, WM) were the most frequent reported B-NHL in HCV infected patients [92, 98, 99].

3.2.1 Etiologic treatment and its place with respect to non-viral treatment

Since the first report in 2002 by Hermine et al in HCV-positive splenic lymphoma with villous lymphocytes [100], a large series of evidence demonstrated that IFN-based AVT is able to induce hematological response along with virological clearance in patients with HCV-associated low grade lymphomas (especially MZL) [101]. A recent meta-analysis on 20 studies evaluated the efficacy of an IFN-based AVT in 254 patients with HCV-associated B-NHL [24]. Lymphoma response rate was 73% in all patients and up to 83% in SVRs. A better lymphoma response was shown in marginal zone compared to non-marginal zone lymphoma (81% vs.71%). Recent data with IFN-free regimens in HCV-associated LPDs suggest their anti-lymphoma activity too [102].

On this basis, AVT should be considered the first-line approach in HCV-associated low grade lymphomas if there is no immediate necessity of a conventional treatment (i.e., systemic symptoms, bulky disease or symptomatic splenomegaly), irrespectively of liver damage (generally mild) [103], as also recommended by recently updated hematological (ESMO [104] and NCCN [105]) and hepatology (EASL [106]) guidelines.

Among HCV-associated aggressive lymphomas, DLBCL is the most frequent type [107]. An immediate conventional therapy is required, being the immunochemotherapy scheme R-CHOP (rituximab, cyclophosphamide, doxorubicin, vincristine, prednisone) the
standard choice [108]. The observation of a dissociation between HCV-RNA levels and liver injury after immunochemotherapy, suggested that liver impairment is not directly related to an enhanced HCV replication [109].

IFN-based AVT, when administered in combination with immuno-chemotherapy significantly increased hematologic toxicity [110], whereas, during the post-chemotherapy follow-up was associated to a better outcome [111]. HCV eradication by IFN-free AVT after completion of immunochemotherapy should also be recommended with the aim to eliminate the lymphoma trigger and potentially reduce the risk of lymphoma relapse [107, 112]. Recently, it has been also reported that treatment of HCV infection in transplant recipients improves both lymphoma and liver disease outcomes strongly suggesting the use of IFN-free regimens following close monitoring for potential drug-drug interactions [113]. Concurrent administration of DAAs and immunochemotherapy should be tested in prospective trials, although no particular overlapping toxicities can be predicted. No specific recommendation is possible for HCV-positive DLBCL relapsed or refractory to a first-line treatment; however, high-dose chemotherapy with autologous support seems feasible in this setting [114, 115].

3.3. HCV-ASSOCIATED KIDNEY DISEASES

The association between HCV and chronic kidney disease (CKD) is undoubted. Several large surveys based on clinical databases suggested a significant impact of HCV on prevalence and incidence of CKD [116, 117]. A large case-control study [118] showed a significant association between HCV infection and membrano-proliferative glomerulonephritis (MPGN). In addition, HCV positive subjects showed a significantly higher prevalence of renal insufficiency (serum creatinine ≥1.5 mg/dl) after adjusting for influencing variables [119-121].

As previously observed, cryoglobulinemic nephropathies represent the most frequent conditions, with type I MPGN the most common form. Membrano-proliferative
glomerulonephritis without cryoglobulinaemia, membranous nephropathy, and mesangioproliferative glomerulonephritis are rare pictures. Occasional observations of focal segmental glomerulosclerosis, fibrillary or immunotactoid glomerulopathies, or thrombotic microangiopathy have been also rarely reported [12]. MPGN can be diffuse or focal (more or less than 50% of involved glomeruli), and it is characterized by duplication of glomerular basement membrane (GBM), GBM interposition by mesangial cells (especially monocytes), sub-endothelial and mesangial deposition of immune reactants, mesangial proliferation with leukocyte exudation, endoluminal hyaline pseudo-thrombi (corresponding to cryoglobulin precipitates) and, rarely, extra-capillary proliferation.

A correct therapeutic approach involves the early evaluation of activity/severity of renal damage and its tendency to rapidly evolve, with individual tailoring of treatment. As an example, in case of cryoglobulinemic nephritis, the distinction between a diffuse or focal MPGN and mesangial glomerulonephritis (the main glomerular patterns of cryoglobulinemic nephritis) appears critical [122]. In fact, the main histopathological changes characterizing MPGN may improve with a strong immunomodulating treatment, including GCs and/or immunosuppressive agents and plasma exchange in escalation protocols. Consequently, these measures should be the first-line therapeutic approach, considering AVT after improvement and stabilization of the condition. GCs should be given only at the onset of the vasculitis process and then rapidly tapered until discontinuation (see below). By contrast, the use of AVT, especially DAA-based, should be recommended as first-line approach in case of mesangial glomerulonephritis, where exudation, endo-capillary and extra-capillary proliferation, and endo-luminal thrombi are almost invariably absent and the lesions are likely to be self-limiting and spontaneously regressing. Significant poor prognostic variables (i.e., age, male gender, creatinine and proteinuria at the time of renal biopsy, number of clinical relapses, and poor blood pressure control) should also be taken into account [122]. Kaplan–Meier survival curves
are worsened by creatinine value >1.5 mg/dL (133 µmol/L) at the time of renal biopsy. Cardiovascular disease is the leading cause of death (over 60 % of cases).

3.3.1 Etiologic treatment

The large majority of data about AVT have been derived from patients with CV. Several evidences justify the interest for HCV eradication in the setting of kidney disease. These include, first, the consistent role of the infection in conditioning the disease outcome (especially evident in kidney transplanted patients), as well as the significantly higher prevalence of HCV infection in nephropathic patients in comparison with the general population. Additional data arise from studies showing the positive effect of viral eradication on CKD and related mortality rates. In a recent population-based cohort including patients with diabetes mellitus [5], the 8-year cumulative incidence of end stage renal disease was significantly higher in HCV infected untreated than in the AVT treated and uninfected cohorts ($p<0.001$). In the past years CV patients showed greater renal response rates when treated with a combination of RTX and PegIFN plus RBV compared with PegIFN and RBV alone [85, 86]. The only availability of IFN-based AVT have been a limitation to the etiologic approach. However, the Kidney Disease Improving Global Outcomes (KDIGO) Group recommended in 2008 to treat patients with flares of CV MPGN with AVT, even if IFN-based; RBV dosage should be closely monitored due to the risk of anemia [123]. No doubt such recommendations are today obsolete. Recently, IFN-free AVTs, due to their good tolerance profile (despite some concerns regarding pharmacokinetics and safety in patients with severe renal failure) [124], will probably positively change the epidemiology of HCV-associated nephropathy. Sise et al, observed on a small cohort of 7 patients with CV and glomerulonephritis treated with IFN-free AVT that a SVR12 was correlated to an improvement in serum creatinine and a reduction in proteinuria [43]. In other recent observations the improvement of kidney disease in virological responders was progressively more evident from the inhibition of viral replication to 12 or 24 weeks after therapy [17, 44, 46].
3.3.2 Non-etiologic treatment

Immunosuppression is still regarded as the first-line intervention in CV if renal involvement is severe/rapidly progressive. In these cases, AVT is usually insufficient to rapidly control renal disease and has also been shown to be detrimental in case of IFN and/or RBV. The conventional high-dose GCS, plasmapheresis, and, in more severe cases, cytotoxic therapy, have been commonly administered in patients with cryoglobulinemic nephritis [125]. Patients usually require multiple courses because of recurrent flares even after a prolonged remission. The combination of CTX (1.5–2 mg/kg/day given orally for 3 months, or 0.5–1 g administered intravenously every 2–4 weeks) in association with oral GCs (0.5–1 mg/kg/day for 1 month with subsequent tapering by 2.5–5 mg/week), often preceded by 3 pulses of 10–15 mg/kg methylprednisolone, represents a common therapy in the severe forms of cryoglobulinemic nephritis. The less toxic mycophenolate mofetil, given for 6 months, can be an alternative option to CTX. Plasma exchange, especially double-filtration plasmapheresis, continues to be successfully used in escalation protocols for rapidly progressive glomerulonephritis. RTX has been successfully used alone, in combination with GCs and also with AVT in several studies. Detailed renal outcomes can be achieved on over 200 patients; renal response (complete plus partial) was 70-90%. Glomerulonephritis usually improves within 3 months; complete healing takes longer. No substantial adverse effects of RTX on HCV viremia were observed. However, a flare of CV has been reported in patients with high CG level receiving high doses RTX (1000 mg), suggesting that in such patients the protocol should start with plasmapheresis and then use the classical schedule (375mg/m² per infusion) [126]. In a study on a large cohort of biopsy-proven severe cryoglobulinemic nephritis followed for 6 years after the administration of the 4+2 × 375 mg/m² protocol, the survival rate was 75% at 6 years and the probability of remaining symptom-free for 10 years was of about 60% [127].
3.4. NEUROPSYCHIATRIC DISORDERS AND HEALTH-RELATED QUALITY OF LIFE (HRQoL)

Neuropsychiatric disorders. HCV is associated with various neuropsychiatric disorders [128]. The prevalence of depression is higher in HCV infected patients than in the general population (59% versus 21%) [129]. Approximately 60% of HCV infected patients suffer of sleep disorders [130], fatigue (prevalence: 50–67%) [131] and mood disorders that, in turn, negatively and independently affect the quality of life [132, 133]. Cognitive impairment was also described [134, 135]. These morbidities did not completely correlate with liver disease severity, suggesting a direct association with HCV [136, 137]. It has been hypothesized that the virus enters the Central Nervous System (CNS) infecting CD68+ peripheral cells, microglia precursors [138]. Therefore, viral proteins could exert a neurotoxic effect [139, 140]. The increased expression of cytokines, such as TNF-alpha and IL-8, could also play a role at local and systemic level [141, 142]. Furthermore, HCV may directly affect the serotonergic and dopaminergic neurotransmission with resultant depressive symptoms [143]. Rarely, neuropsychiatric manifestations are secondary to HCV-induced CV with abnormal brain MRI [144].

Health related quality of life (HRQoL). Naive HCV-positive patients are characterized by poor HRQoL compared to the general population [145-147]. Based on the Short Form 36 (SF-36) Health Survey questionnaire, they consistently show deficits in several domains, particularly those involving physical role, general health and vitality [148-150]. In turn, poor HRQoL can lead to difficulties with interpersonal relations, decreased feelings of self-value and utility, and depression, with a decreased ability both at work and at home, and obvious cost implications.

3.4.1 Etiologic treatment

The relationship between mood disorders and IFN-based AVT has been widely discussed. IFN side-effects increased with higher doses and longer therapies [151]; the onset of
depression has been observed in 30%-70% of treated patients [152, 153]. IFN was also associated with sleep disturbances, anxiety, cognitive disorders (up to 50%), while maniac and psychotic symptoms were less frequent (3% of patients). Irritability is also an important side-effect, involving approximately 75% of patients during therapy.

The HRQoL records during IFN and RBV therapy are usually low and the average scores of the SF-36 worsen rapidly, in particular, in the physical role, emotional role, vitality and social functioning [154]. Consequently, before to initiate an IFN-based treatment, a psychiatric counseling, should be recommended [151]. In some cases, the management of symptoms requires a therapy including pharmacological support with antidepressants (particularly selective serotonin reuptake inhibitors) or with benzodiazepines [155]. The possible co-morbidity with substance abuse limits the use of these drugs, for the risk of rebound effect, tolerance and dependence. In most instances the neuropsychiatric symptoms are resolved after IFN discontinuation. After SVR, the HRQoL scores improve compared to baseline values [156].

The effect on HRQoL of IFN-free treatment has been studied by Younossi and colleagues in patients treated with sofosbuvir-based combinations with or without RBV [154, 157, 158]. Compared to placebo, these treatments were not associated with HRQoL impairment and the SVR correlated with HRQoL improvement [154]. Nevertheless, the presence of RBV still seems to poorly influence HRQoL, partly due to hemoglobin reduction: patient-reported outcomes (PRO’s) are higher in RBV-free regimens [158].

In conclusion, compared to IFN-based, IFN-free AVTs, cause minimal reduction in PROs during therapy and improvement of vitality and fatigue at SVR12 [158]. Although few specific drug-drug interactions have been described between psychotropic molecules and DAAs (i.e. between Ritonavir and Carbamazepine, Nefazodone and Triazolam) [159] a cautious approach is needed since pharmacokinetic interactions can induce increase or reduction of one or both drugs, with toxicity or under-dosing risks.
3.5. PORPHYRIA CUTANEA TARDA (PCT)

PCT is characterized by low activity of uroporphyrinogen decarboxylase (URO-D) involved in heme synthesis. It can be classified as familial or sporadic. In the acquired, sporadic form (type I PCT) a 50% deficient activity of URO-D in the liver leads to an overt manifestation; this can be the consequence of a trigger such as HCV, alcohol and liver toxins [160-162]. Iron overload (hepatic siderosis) is a critical pathogenetic event, disrupting the enzymatic activity of URO-D by inducing the formation of an intracellular inhibitor [163]. The relationship with HCV infection is supported by epidemiological associations, especially in some geographical areas [164]. However, the absence of altered porphyrin metabolism in HCV-positive patients without PCT, argues against a direct role of HCV. PCT manifestations include typical cutaneous lesions in sun-exposed areas, photosensitivity, skin fragility, facial hypertrichosis and late-stage sclerodermoid plaques.

3.5.1 Etiologic treatment

The indirect role played by HCV infection and the sensitivity to the iron deposits due to the hemolytic effect of RBV, may explain the controversial results reported with IFN/RBV AVT. On one hand, an effective AVT may potentially improve clinical and laboratory manifestations of PCT, especially when preceded by therapeutic phlebotomy [162]. On the other hand, a worsening and a new-onset PCT have been reported in some cases [165], possibly due to the RBV-induced hemolytic anemia, further increasing liver iron excess. It is expected that the management of this condition could benefit from a viral eradication with both IFN- and RBV-free regimens, but no data are available today. It is also conceivable that DAAs already known to cause photosensitivity have to be avoided.
3.5.2 Non-etiologic treatment

The standard of care for PCT includes photo-protection, anti-malarial drugs (chloroquine) and phlebotomy, the latter to reduce hepatic iron stores [163].

3.6. LICHEN PLANUS

Lichen planus (LP) is an inflammatory disorder involving the skin and the oro-genital mucous membranes. Oral LP is the most studied phenotype in the setting of HCV infection [166]. The association with HCV has been widely described [167] and it has been suggested that HCV-LP is the result of a T-cell mediated autoimmune reaction [168, 169]. Conflicting data may depend on geographical and/or methodological factors, with genetics (HLA-DR-associations), age and IFN-based AVT also playing a role [163].

3.6.1 Etiologic treatment

IFN-based AVT should be avoided. In fact, type-1 IFNs are a major driver of lichenoid inflammation [170] and IFN-based AVT may negatively influence established LP or induce the onset of lichenoid lesions. This increases the interest for studies on IFN-free AVT, although no data are available at present.

3.6.2 Non-etiologic treatment

Treatment of LP is based on a step-wise approach with the use of topical and/or systemic immune-modulating agents, tailored on disease’s characteristics [171]. Systemic treatment is indicated in severe/advanced disease, and includes retinoids (acitretin), GCs, methotrexate, and cyclosporine [172]. In HCV-positive LP it should be performed considering the severity of liver disease: a strict follow-up of the main liver function tests (LFTs) should be performed as well as an accurate evaluation of the possible drug-drug interactions between DAAs and non-etiologic drugs (i.e., cyclosporine).
3.7. HCV-ASSOCIATED ENDOCRINE DISORDERS

The main endocrine HCV-EHDs are represented by thyroid diseases and type 2 diabetes mellitus (T2DM) [19, 127]. Gonadal dysfunctions are reported in male HCV-infected individuals [19], but data on specific therapies are lacking.

3.7.1 THYROID DISORDERS

Autoimmune thyroid diseases are among the most frequent endocrine disorders in HCV infected patients [173]. They result from a dysregulation of the immune system leading to T cell-mediated organ-specific autoimmunity. In 80-85% of cases, circulating thyroid autoantibodies are detected; thyroid ultrasonography and cytology can help in the diagnosis. A thyroid dysfunction (mainly hypothyroidism) is present in about 30% of patients [127]. In a recent meta-analysis, the prevalence of anti-thyroglobulin antibody (AbTG), anti-thyroid peroxidase antibody (AbTPO), anti-thyroid microsomal antibody (ATMA) and hypothyroidism were higher in HCV positive patients than in controls [174]. An even higher prevalence of thyroid dysfunction was observed in HCV-CV patients [175, 176].

A higher prevalence of papillary thyroid cancer has been found in chronically HCV-infected patients, particularly in those with autoimmune thyroid diseases [173]. In a recent wide cohort study, anti-HCV seropositivity was associated with multivariate-adjusted hazard ratio for thyroid cancer [6].

3.7.1.1 Etiologic treatment

IFN-α therapy is a well-known risk for the development of autoimmune thyroid diseases and thyroid dysfunctions [177]. Thyroid disease developed in up to 25-30% of HCV patients during Peg-IFN/RBV treatment, and about half of these patients need thyroid treatment [178]. Most patients with IFN-α-induced hyperthyroidism present Hashitomoto disease and have a transitory hyperthyroidism, while a minority of them develop Graves'
disease. In patients with long-term hyperthyroidism and Graves' disease, radioiodine therapy was effective and well-tolerated [179].

A recent study retrospectively analyzed data from Graves' disease patients with or without HCV infection treated with IFN-α or methimazole (MMI), respectively. Results suggested a more favorable course of Graves' disease in HCV patients treated with IFN-α, than in uninfected patients [180].

Assessment of thyroid-stimulating hormone (TSH) and thyroid autoantibodies at baseline and close monitoring of thyroid function during Peg-IFN/RBV therapy are necessary for early detection and management of IFN-induced thyroid disease [181].

High values of the circulating prototype Th1 chemokine (C-X-C motif) ligand 10 (CXCL10), are present in HCV CHC and CV patients with autoimmune thyroid diseases [182]. However, lower pretreatment serum CXCL10 levels were associated with thyroid disease, and thyroid disease prevalence increases in HCV female patients and patients who are positive for AbTPO at baseline, treated with PEG-IFNa-2a/RBV [183]. In another study, thyroid disease with high TSH levels has been shown to be associated with good response to Peg-IFN/RBV [184].

Currently, scarce data exist about IFN-free AVT. The possibility of interactions of Levothyroxine (L-T4) (the common treatment for HCV autoimmune thyroid diseases) [185] with DAAs suggest an accurate tailoring of treatment schedules [186].

3.7.1.2 Non-etiologic treatment

Treatment of thyroid disease (hypothyroidism/hyperthyroidism) or thyroid cancer should be performed when needed, according to the current specific guidelines [187].

3.7.2 TYPE 2 DIABETES MELLITUS

Epidemiological data support the association between HCV infection and T2DM [19, 188]. In a review of 102 studies, diabetes was one of the most common HCV-EHM (15%
of patients) [189] with important implications for outcome, prevention and treatment. It was shown that T2DM, with or without insulin resistance (IR), reduces responsiveness to IFN-based AVT [190, 191] and was associated with higher risk of developing cirrhosis and hepatocellular carcinoma (HCC), even after viral eradication [192, 193].

HCV may induce IR through multiple mechanisms [194]. In turn, IR plays a crucial role in fibrosis progression, and has a negative impact on AVT responses [195]. Obesity and physical inactivity also cause hyperinsulinemia, and accelerate HCV-induced damage [196]. HCV-induced IR can also lead to arterial hypertension, hyperuricemia, and atherosclerosis, resulting in increased cardiovascular mortality. The interaction of T2DM with CHC and “non-alcoholic fatty liver disease” (NAFLD) may result in a "vicious circle", that can lead to an increased risk of all-cause mortality and liver-related and cardiovascular complications [197, 198]. In turn, HCV infection in patients with T2DM may also increase the proportion of DM-related kidney complications [199].

3.7.1.2 Etiologic treatment

Most available data are concerning IFN-based AVT. Clinical trials reported improvement of glucose metabolism [200] and reduction in the T2DM incidence after HCV eradication [201]. Concerning DAAs, a case report showed improved glycemic control after a successful sofosbuvir-based regimen in a patient with poorly controlled T2DM [202], while other analyses showed a marginal impact of IFN-free regimens on hemoglobin A1c [203]. T2DM was also a negative predictor of patient-reported outcomes [204]. Further studies are needed to correctly evaluate the AVT influence on the long-term course of T2DM.

3.7.1.3 Non-etiologic treatment

HCV-T2DM requires [205] various measures including: lifestyle changes, regular diabetes screening, analysis of other risk factors accelerating both CHC and DM, such as obesity, dyslipidemia, and alcohol consumption. Early identification and treatment of IR or T2DM
reduce liver disease progression [206], incidence of HCC, transplant-related morbidity and mortality, and improve the AVT response [191, 207], minimizing side effects [200].

Therapeutic options in HCV-T2DM include diet changes, anti-diabetic drugs, statins. It is not clear whether the best approach is a peroxisome proliferator-activated receptor (PPAR) agonist or a biguanide such as metformin [208-210]. Prospective, randomized controlled trials showed increased SVR using metformin in HCV patients with IR receiving AVT [211]. Different analyses that evaluated metformin use in these patients showed a significant reduction of HCC, liver-related death, and liver transplant with an increased survival rate [211]. Concerning statins, the inhibition of HCV replication was shown in vitro [128], but not in vivo [212, 213].

3.8 SICCA SYNDROME/SJÖGREN’S SYNDROME

The frequent association between sicca syndrome and HCV infection has been shown by both experimental and epidemiological studies [160, 214, 215]. Sicca syndrome related symptoms have been reported in 20% to 30% of HCV patients, whereas less than 5% of patients with a defined Sjögren’s syndrome are HCV-positive [216]. Although low titers of antinuclear antibodies and RF are common in patients with HCV-related sicca syndrome, the presence of primary Sjögren’s syndrome related autoantibodies (anti-SSA/SSB) is uncommon.

Similarities exist between HCV-related sicca syndrome and “true” primary Sjögren’s syndrome. However, HCV-positive sicca syndrome patients are older and more likely to have photosensitivity and CV than patients with primary Sjögren’s syndrome [217]. Patients with CV may develop a mild sicca syndrome in the absence of typical histopathological and/or serological alterations. In some cases the differential diagnosis between primary Sjögren’s syndrome and CV may be very difficult, mainly in patients with overt sicca syndrome, cryoglobulinemia, and HCV infection [218].
3.8.1 Etiologic treatment

IFN-based AVT generally has scarce clinical efficacy, probably because in many cases, the onset of symptoms is a consequence of gland destruction. There is no available data with IFN free DAAs.

3.8.2 Non-etiologic therapy

Besides topical treatments that may partially improve HRQoL, there is no specific systemic treatment for HCV-associated sicca syndrome [219].

3.9 ARTHRITIS

Arthralgia is common in HCV-infected patients [220] while arthritis is rare (4%-5%) [221, 222]. Two different subsets of HCV-related arthritis have been identified in some studies on limited groups: the more common symmetrical polyarthritis and the intermittent mono-oligoarthritis [223-226]. The symmetrical polyarthritis subset shares several aspects with rheumatoid arthritis (RA): symmetrical involvement of wrists and hands; positive RF in more than 50% of patients, and increased inflammation markers. However, the course of HCV related symmetrical polyarthritis is less aggressive when compared with RA, typically non-deforming and not associated with articular bone erosions; rheumatoid nodules were never reported [227, 228]. Anti-CCP antibodies can be helpful in the differential diagnosis between HCV related symmetrical polyarthritis and RA because they are rarely detected in the former and almost constant in the latter [229, 230]. The intermittent mono-oligoarthritis subset typically involves the medium and large joints of the lower limbs, mainly the ankles [227, 228]. Its course is usually acute, with frequent relapses. The intermittent mono-oligoarthritis subset is closely related to cutaneous and laboratory manifestations of CV. Intermittent mono-oligoarthritis flares frequently occur simultaneously to skin flares of CV.
3.9.1 Etiologic treatment

It has been suggested that, once the diagnosis of HCV-associated arthritis is made, AVT can be taken into account. PegIFN plus RBV AVT has been successfully used [19, 225, 231], but it can promote the worsening of arthritis in others [232]. Therefore, it is conceivable that IFN-free regimens will be more useful.

3.9.2 Non-etiologic treatment

Anti-TNF agents are safe in patients with concomitant HCV infection and classical RA [233], but their use appears generally excessive. Therapeutic approaches to HCV-related arthritis remains largely empirical, because few studies have been published. Usually, HCV-related arthritis patients may respond to low doses GCs and hydroxychloroquine. Concerns may be raised regarding the use of immunosuppressive or potentially hepatotoxic drugs, in particular methotrexate and leflunomide, often not necessary or contraindicated. On the contrary, RTX may be successfully employed, mainly in patients with more aggressive disease, and may represent the first-choice treatment in patients with arthritis in the setting of CV [234].

3.10 MISCELLANEA

For other HCV-EHMs, data about the effect of viral eradication (representing the most important argument in favor of a true etiopathogenetic association) are too scarce or absent. Some of these can represent either EHMs or side-effects of AVT or consequences of advanced liver damage, making frequently difficult their exact attribution. These latter include pruritus, psoriasis and other skin disorders. Other cases, like urticaria, have been only suspected to be associated with HCV, due to the existence of both limited and discordant data.
4. DISCUSSION

We recently formed an International Study Group of Extrahepatic Manifestations related to HCV (ISG-EHCV) with the aim to provide a homogeneous clinico-diagnostic [19] and therapeutic approach to HCV patients presenting with HCV-EHMs through the development of a multidisciplinary international network of experts.

This paper summarizes recommendations about a new hot and discussed topic in the managing of HCV infection: the therapeutic approach to various extrahepatic diseases more or less directly linked to this infection. HCV-EHMs have been shown to be responsible for significantly higher mortality/morbidity rates when compared with non-infected (or no more infected) subjects [6], with important consequences in terms of social costs.

The present recommendations are based only on scientific criteria and do not take into account the debated issue related to the cost/benefit ratio, which is also a concern, especially in some regions of the world.

In each HCV-EHM, the actual pathogenic role played by the virus was evaluated in order to better understand the opportunity and urgency to use AVT. In turn, the possibility to completely eradicate the infection, appears crucial to better evaluate such a role (“ex adiuvantibus criterium”). For disorders, like the HCV-related LPDs, the effect of viral eradication represents the stronger proof of the etiopathogenetic involvement of HCV. In this light, however, the former IFN-based etiologic therapy frequently provided a uncertain “ex adiuvantibus” picture, due to indirect immunomodulatory effects of IFN, especially in studies with a short follow-up. The availability of drugs directly acting on the virus in IFN-free combinations led to minimize or abolish (in both IFN- and RBV-free regimens) such immunomodulatory effects. Furthermore, their safety promises to allow the HCV eradication also in patients previously intolerant with severe HCV-EHMs. On the other hand, it is conceivable that, in some cases, the positive effects on HCV-EHMs (improvement or resolution) at the end of treatment and in the early post treatment
period, will be less evident compared to IFN-based AVT. Available, although limited data, obtained in HCV LPDs like CV and NHL [46] seem to be in agreement with this hypothesis, suggesting the opportunity for a longer follow-up. A long-term post-treatment follow-up appears of interest also in other HCV-EHMs, in order to evaluate the real impact of DAA-based therapy.

Another confirmation arises from the observation of a paradoxical improvement of some HCV-EHMs despite of HCV persistence (virologic non-response), observed after IFN-based regimens and usually transient [17]. The availability of drugs without immune-modulatory properties, makes also easier the decision to treat patients with autoimmune disorders and uncertain viral etiopathogenesis, thus at risk of worsening after an IFN-based therapy. The availability of IFN-free AVT support the recommendation to eradicate, as soon as possible, a virus known to strongly sustain B-cell activation and with lymphomagenetic potential. In other words, IFN-free AVT should be a priority in HCV-positive autoimmune and/or lymphoproliferative disorders, even if the liver damage is not severe.

The urgent need of clear and easy-to-use therapeutic guidelines, comes from this specific aspect in managing a patient with EHMs. The hepatologist has to be advised that a counseling with a specialist may be not sufficient, because both physicians should recognize a new systemic pathological entity generated by the infection, the so-called HCV-disease [19]. In more details, the therapeutic approach could not be referred to specialist guidelines for each specific manifestation/symptom, but should take into account the strong impact on all the aspects of HCV infection. This should happen not only when the probability is high that HCV is the causal agent of an EHM (as it is for HCV-CV), but also when the virus is only a trigger (as for HCV-PCT).

The exchange of information between different specialists has to aim at evaluating the pros and contras of different interventions and their timelines. An exemplary case is represented by situations requiring a non-etiologic priority approach (i.e. rapidly evolving
HCV-EHMs or, conversely, in absence of national health care reimbursement as presently in some countries. Another example is given by difficult-to-treat cases for patient’s characteristics (i.e. advanced cirrhosis in an experienced patient previously not responsive to AVT) and/or for the virus (i.e. HCV genotype 3). Usually, in these conditions, RBV is indicated to increase the chances of viral eradication, but it is contraindicated or should be used cautiously for some EHMs (i.e. in presence of ischemic damage, significant renal damage, PCT).

Non etiologic therapies also need a close collaboration between specialists of different medical areas: i.e. to manage patients with co-morbidities requiring a chronic administration of drugs potentially interacting with some DAAs. This means that it is important to agree on tailoring both the AVT and the other therapies possibly rescheduling one and/or making appropriate changes with non-interfering alternative drugs. Dedicated websites could support and help the health care providers in this kind of decision.

The critical point is therefore a wider and multidisciplinary spreading of the knowledge about HCV-EHMs, in order to provide a more conscious and aware approach. The present recommendations are designed to address this need. They mean to briefly recall to non-specialists, the essential features of the different manifestations of the HCV disease in order to provide the best intervention in terms of etiologic and/or non-etiologic (pathogenetic-symptomatic) treatments. This would be the necessary basis for future modifications according to available new data.

Overall, the main take home messages we can highlight from the available data are briefly summarized in table 5.

In conclusion, although the hope for a definitive cure for the HCV EHMs seems to be closer than ever, the complexity of these patients in whom different etiopathogenic scenarios are coexisting (autoimmune, metabolic, neoplastic) anticipate a more difficult
therapeutic scenario than that is now reported in the standard HCV infected patients’ population.

In other words, with this work we would like to provide patients, health care practitioners and specialists of the referral centers proper information on the structured and comprehensive management of patients with a complex pathological entity, the HCV disease.
Appendix A.

International Study Group of Extrahepatic Manifestations Related to Hepatitis C Virus Infection (ISG-EHCV):

Convenors of the ISG-EHCV:

Patrice Cacoub, MD (COORDINATOR)
Department of Internal Medicine and Clinical Immunology
Hôpital La Pitié Salpêtrière
83 Boulevard de l'hôpital 75013 Paris, France
Departement Hospitalo-Universitaire I2B
UMR 7211 (UPMC/CNRS), UMR S-959 (INSERM)
Université Pierre Marie Curie, Paris 6.
tel. + 33 1 42 17 80 27; fax + 33 1 42 17 80 33
E-mail: patrice.cacoub@psl.aphp.fr

Milvia Casato
Department of Clinical Immunology.
Sapienza University of Rome, Viale dell'Università 37,
00185 Rome, Italy
E-mail: milvia.casato@uniroma1.it

Clodoveo Ferri
Chair and Rheumatology Unit,
Medical School, University of Modena and Reggio Emilia,
zienda Ospedaliero-Universitaria, Policlinico di Modena,
41124 Modena, Italy
E-mail: clferr@unimore.it
Peter Lamprecht
Department of Rheumatology & Vasculitis Center, University of Lübeck, Ratzeburger
Allee 160, 23538 Lübeck, Germany, Tel.: ++49 (0)451500 2368, Fax: ++49 (0)451500 3650, E-mail: peter.lamprecht@uksh.de

Alessandra Mangia
Liver Unit, IRCCS “Casa Sollievo della Sofferenza”,
San Giovanni Rotondo, Italy.
a.mangia@tin.it

Manuel Ramos-Casals
Department of Autoimmune Diseases
Josep Font Laboratory of Autoimmune Diseases
Hospital Clinic CELLEX-IDIBAPS
08036 Barcelona, Spain
Tel: + 34-932275774; Fax: + 34-932271707
E-mail: mramos@clinic.ub.es

David Saadoun
Department of Internal Medicine and Clinical Immunology
Hopital La Pitié Salpêtrière
83 Boulevard de l’hôpital
75013 Paris, FRANCE
UMR 7211 (UPMC/CNRS), UMR S-959 (INSERM)
Université Pierre Marie Curie, Paris 6.
tel. + 33 1 42 17 80 27; fax + 33 1 42 17 80 33
Athanasios G Tzioufas
Director Department of Pathophysiology
School of Medicine University of Athens
75 M. Asias st, Building 16, Room 32
11527 Athens, Greece
E-mail: agtzi@med.uoa.gr

Zobair M Younossi
Chairman, Department of Medicine, Inova Fairfax Medical Campus
Vice President for Research, Inova Health System
Professor of Medicine, VCU-Inova Campus
The Claude Moore Health Education and Research Center
Beatty Center for Integrated Research
3300 Gallows Road, Falls Church, VA 22042, USA
Telephone 703-776-2540; Fax 703-776-4388
E-mail: Zobair.Younossi@inova.org

Anna Linda Zignego; MD, Ph.D
Professor of Medicine, Interdepartmental Center MaSVE
Department of Experimental and Clinical Medicine
Medical School, University of Florence
Largo Brambilla, 3 50134 Firenze, Italy.
Tel: + 39055 2758086; Fax: + 39055 7947335
E-mail: annalinda.zignego@unifi.it
Multidisciplinary International Working Group of the ISG-EHCV

Advisory Working Group:

Dr. Anne Claire Desbois, MD, Research fellow, Université Pierre et Marie Curie, Paris (anneclairedesbois@yahoo.fr)

Dr. Cloe Comarmond, MD, Research fellow, Université Pierre et Marie Curie, Paris (clocomarmond2015@gmail.com)

Prof Oliver Hermine, Hematologist, Université Paris Descartes, Paris (olivier.hermine@nck.aphp.fr)

Dr. Pilar Brito-Zeón, Research Fellow, Hospital Clinic, Barcelona (mbrito@clinic.ub.es)

Prof. Xavier Forns, Hepatologist, Hospital Clinic, Barcelona (xforns@clinic.ub.es)

Prof. Armando Lopez-Guillermo, Hematologist, Hospital Clinic, Barcelona (alopezg@clinic.ub.es)

Dr. Laura Gragnani, Research Fellow Interdepartmental Center MaSVE Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy (laura.gragnani@unifi.it)

Prof. Alberto Bosi, Hematologist, University of Florence (alberto.bosi@unifi.it)

Prof. Marco Matucci Cerinic, Rheumatologist, University of Florence (marco.matuccicerinic@unifi.it)
Prof. Luca Arcaini, Department of Molecular Medicine, University of Pavia & Department of Hematology Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy luca.arcaini@unipv.it

Prof. Dario Roccatello, Center of Research of Immunopathology and Rare Diseases, and Nephrology and Dialysis Unit. San G. Bosco Hospital and University of Turin, Italy dario.roccatello@unito.it

Dr. Marcella Visentini, Research fellow, Sapienza University of Rome (marcella.visentini@uniroma1.it)

Dr. Alessandro Pulsoni, Hematologist, Sapienza University of Rome (pulsoni@bce.uniroma1.it)

Dr. Adriano De Santis, Hepatologist, Sapienza University of Rome (adsdmc@tin.it)

Dr. Theodoros Androutsakos, Research fellow, University of Athens

Prof. Gregory Hatzis, Hepatologist, University of Athens

Dr. Anja Kerstein, Research fellow, University of Lübeck (anja.kerstein@uksh.de)

Dr. Susanne Schinke, Rheumatologist, University of Lübeck (s.schinke@uksh.de)

Prof. Klaus Fellermann, Gastroenterologist & Hepatologist, University of Lübeck (klaus.fellermann@uksh.de)

Dr. Sandra Muñoz, Rheumatologist, Centro Médico Nacional 20 de Noviembre, ISSSTE, México DF (ssanml@yahoo.com.mx)

Dr. Francisco Medina, Rheumatologist, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Mexico DF (fmedina_99@yahoo.com)
Dr. Luis-Javier Jara, Rheumatologist, Centro Médico Nacional La Raza, Mexico DF (luis_jara_quezada@hotmail.com)

Dr. Mario García-Carrasco, Rheumatologist, Systemic Autoimmune Diseases Research Unit, IMSS, Puebla, México Department of Rheumatology and Immunology, Benemérita Universidad Autónoma de Puebla, Puebla, México (mgc30591@yahoo.com)

Prof. Munther Khamashta, Internist & Rheumatologist, Dubai Hospital, Dubai, United Arab Emirates (munther.khamashta@kcl.ac.uk)

Prof. Yehuda Shoenfeld, Head Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel (Yehuda.Shoenfeld@sheba.health.gov.il)

Prof. John H. Stone, Harvard Medical School, Boston, MA, US (jhstone@partners.org)

Dr. Soledad Retamozo, Hospital Privado, Centro Médico de Córdoba, Córdoba, Argentina (soleretamozo@hotmail.com)

Prof. Chien-Jen Chen, National Taiwan University, Nankang, Taipei 11529, Taiwan (cjchen@ntu.edu.tw)

Prof. Margit Zeher, University of Debrecen, Debrecen, Hungary (zeher@iibel.dote.hu)

Prof. Elke Theander and Thomas Mandl, Skåne University Hospital, Malmö, Sweden (elke.theander@med.lu.se) (thomas.mandl@med.lu.se)

Prof. Gaafar Ragab, MD • Internal Medicine • Faculty of Medicine, Cairo University Department of Internal Medicine Clinical Immunology and Rheumatology Unit Internal Medicine Hospital • Kasr Al-Ainy, 8 Kasr Al-Ainy st., Cairo, P.O. 11562 • Tel: +201005190006 • Fax: +20 233380345 • Mailing address: P.O. Box: 152 Orman, Giza, Egypt, 12612 • E-mail: gragab@kasralainy.edu.eg or gaafarr@gmail.com
Dr. Alexandre Da Sousa, rheumatologist, Rua Loefgren, 1587. Apt 82. Vila Clementino. Sao Paulo 04040-032, Brazil, alexandrewagner@uol.com.br

Prof. Alessandro Antonelli, Department of Clinical and Experimental Medicine, University of Pisa, Via Savi 10, Pisa 56126, Italy. alessandro.antonelli@med.unipi.it

Dr. Teresa Urraro, Dr. Elena Gianni, Dr. Monica Monti, Elisa Fognani, Interdepartmental Center MaSVE, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla, 3, 50134 Firenze, Italy. (teresa.urraro@yahoo.it; elegianni@yahoo.it; m.monti@dmi.unifi.it; elisa.fognani@gmail.com)

Dr. Poupak Fallahi, Dr. Silvia Martina Ferrari: Department of Clinical and Experimental Medicine, University of Pisa, Via Savi 10, Pisa 56126, Italy.

Dr. Marco Sebastiani, Dr. Dilia Giuggioli, Dr. Michele Colaci, Chair and Rheumatology Unit, Medical School, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria, Policlinico di Modena, via del Pozzo 71 41124 Modena, Italy (marco.sebastiani@unimore.it - diliagjuggioli@hotmail.com - michelecolaci@virgilio.it)
REFERENCES

[84] De Vita S, Quartuccio L, Fabris M. Hepatitis C virus infection, mixed cryoglobulinemia and BlyS upregulation: targeting the infectious trigger, the autoimmune response, or both? Autoimmun Rev. 2008;8:95-9.

Italian group for blood and marrow transplantation. Bone Marrow Transplant. 2003;31:295-300.

[202] Pashun RA, Shen NT, Jesudian A. Markedly Improved Glycemic Control in Poorly Controlled Type 2 Diabetes following Direct Acting Antiviral Treatment of Genotype 1 Hepatitis C. Case Reports Hepatol. 2016;2016:7807921.

Figure 1: Hypothetical pathogenetic process of lymphoproliferative disorders.

FIGURE CAPTION

During HCV chronic infection HCV-related LPDs arise from a cascade of mechanisms and events that progressively lead such lymphoproliferation to lose the dependence from the etiologic viral agent (no-return points). The prolonged and abnormal B-cell stimulation is sustained by different factors: the HCV ability to infect these cells; the E2-CD81 binding, that lowers the activation threshold of lymphocytes; a direct action of HCV proteins; the effect of several cytokines, first of all the B-cell Activating Factor (BAFF). The apoptosis inhibition and the consequent prolonged B-cell survival, could be caused by different events, particularly the t(14;18) translocation leading to overexpression of the anti-apoptotic protein Bcl-2 together with other genetic mutations. It is conceivable that all these mechanisms work on a particular host genetic pattern, preparing a favorable background for the onset of HCV-related LPDs. A contribution of epigenetic modifications could also take part to this complex pathogenesis. The addition of other unknown genetic aberrations, would lead to a frank malignancy that can progressively become independent from the viral etiologic agent. LPDs: lymphoproliferative disorders; E2: HCV E2 protein; BAFF: B-cell Activating Factor; t(14;18): chromosomal translocation (14;18) or Bcl2 gene rearrangement; Bcl-2 (B-cell lymphoma 2) gene and protein; NHL: non-Hodgkin’s lymphoma.
Table 1. Main adverse event of second-wave DAAs

<table>
<thead>
<tr>
<th>PROTEASE INHIBITORS</th>
<th></th>
</tr>
</thead>
</table>
| Simeprevir | - Photosensitivity
- Contraindicated in cirrhosis (Child-Pugh B or C)
- Hyperbilirubinaemia |
| Paritaprevir (boosted with ritonavir) | - Drug-drug interactions (due to ritonavir)
- Contraindicated in cirrhosis (Child-Pugh B or C)
- Hyperbilirubinemia
- Hypertransaminasemia |
| Grazoprevir | - Well tolerated |

<table>
<thead>
<tr>
<th>NS5A INHIBITORS</th>
<th></th>
</tr>
</thead>
</table>
| Ledipasvir | - Well tolerated
- Some drug-drug interactions (with acid suppressants) |
| Ombitasvir | - Well tolerated |
| Daclatasvir | - Well tolerated |
| Elbasvir | - Well tolerated |

<table>
<thead>
<tr>
<th>NS5B INHIBITORS</th>
<th></th>
</tr>
</thead>
</table>
| Sofosbuvir | - Contraindicated in severe renal impairment (estimated GFR less than 30ml/min)
- Some drug-drug interactions (with amiodarone) |
| Dasabuvir | - Well tolerated |
Table 2. Individual health criteria for prioritization in case of HCV extrahepatic manifestations

<table>
<thead>
<tr>
<th>Health Criteria</th>
<th>EASL*</th>
<th>WHO**</th>
<th>AASLD/IDSA***</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metabolic syndrome</td>
<td>No specific indications</td>
<td>Prioritized</td>
<td>No specific indications</td>
</tr>
<tr>
<td>Cryoglobulinemia vasculitis</td>
<td>Prioritized</td>
<td>Prioritized</td>
<td>No specific indications</td>
</tr>
<tr>
<td>Lymphoproliferative disorders</td>
<td>Prioritized</td>
<td>Prioritized</td>
<td>No specific indications</td>
</tr>
<tr>
<td>Renal disease</td>
<td>Prioritized</td>
<td>Prioritized</td>
<td>No specific indications</td>
</tr>
<tr>
<td>Debilitating Fatigue</td>
<td>Prioritized</td>
<td>Prioritized</td>
<td>No specific indications</td>
</tr>
<tr>
<td>Significant psychosocial morbidity</td>
<td>No specific indications</td>
<td>Prioritized</td>
<td>No specific indications</td>
</tr>
</tbody>
</table>

***AASLD/IDSA: American Association for the Study of Liver Disease (AASLD)/ Infectious Diseases Society of America (IDSA): No specific indications: “Treatment is recommended for all patients with chronic HCV infection, except those with short life expectancies that cannot be remediated by treating HCV, by transplantation, or by other directed therapy” http://www.hcvguidelines.org/full-report-view
<table>
<thead>
<tr>
<th>refer. n°</th>
<th>Author</th>
<th>Year</th>
<th>n° patients</th>
<th>Treatment</th>
<th>CS</th>
<th>Treatment duration (months)</th>
<th>Virological response</th>
<th>Clinical response°</th>
</tr>
</thead>
<tbody>
<tr>
<td>[2]</td>
<td>Ferri</td>
<td>1993</td>
<td>26</td>
<td>2 MIU IFN/d (1m) → 2 MIU IFN x3/w (5m)</td>
<td>yes</td>
<td>6</td>
<td>13%</td>
<td>n.a.</td>
</tr>
<tr>
<td>[13]</td>
<td>Ferri</td>
<td>1993</td>
<td>15</td>
<td>2 MIU IFN/d (1m) → 2 MIU IFN x3/w (4m)</td>
<td>yes</td>
<td>5</td>
<td>8%</td>
<td>n.a.</td>
</tr>
<tr>
<td>[29]</td>
<td>Marcellin</td>
<td>1993</td>
<td>2</td>
<td>3 MIU IFN x3/w</td>
<td>n.a.</td>
<td>6</td>
<td>0%</td>
<td>n.a.</td>
</tr>
<tr>
<td>[30]</td>
<td>Johnson</td>
<td>1993</td>
<td>4</td>
<td>1-10 MIU IFN</td>
<td>no</td>
<td>2-12</td>
<td>100%</td>
<td>75%</td>
</tr>
<tr>
<td>[235]</td>
<td>Zimmermann</td>
<td>1993</td>
<td>1</td>
<td>3 MIU IFN x3/w</td>
<td>no</td>
<td>3</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>[236]</td>
<td>Bojic</td>
<td>1994</td>
<td>1</td>
<td>3 MIU IFN x2/w (4w) → 3 MIU IFN x3/w (2w)</td>
<td>no</td>
<td>6 w</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>[14]</td>
<td>Misiani</td>
<td>1994</td>
<td>27</td>
<td>1.5 MIU IFN x3/w (1w) → 3 MIU IFN x3/w (23w)</td>
<td>no</td>
<td>6</td>
<td>60%</td>
<td>0%</td>
</tr>
<tr>
<td>[51]</td>
<td>Dammacco</td>
<td>1994</td>
<td>15</td>
<td>3 MIU IFN x3/w</td>
<td>no</td>
<td>12</td>
<td>42%</td>
<td>17%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>17</td>
<td>3 MIU IFN x3/w</td>
<td>yes</td>
<td>12</td>
<td>50%</td>
<td>14%</td>
</tr>
<tr>
<td>[237]</td>
<td>Johnson</td>
<td>1994</td>
<td>8</td>
<td>3 MIU IFN x3/w</td>
<td>no</td>
<td>6-12</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>[238]</td>
<td>Mazzaro</td>
<td>1994</td>
<td>18 (5 NHL)</td>
<td>3 MIU IFN x3/w</td>
<td>no</td>
<td>12</td>
<td>44%</td>
<td>22%</td>
</tr>
<tr>
<td>[239]</td>
<td>Gilli</td>
<td>1996</td>
<td>1</td>
<td>3 MIU hIFN-α x3/w</td>
<td>no</td>
<td>10</td>
<td>1(100%)</td>
<td>1(100%)</td>
</tr>
<tr>
<td>[241]</td>
<td>Mazzaro</td>
<td>1995</td>
<td>18</td>
<td>3 MIU IFN x3/w</td>
<td>no</td>
<td>6</td>
<td>44%</td>
<td>11%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>18 (8 NHL)</td>
<td>3 MIU IFN x3/w</td>
<td>no</td>
<td>12</td>
<td>50%</td>
<td>22%</td>
</tr>
<tr>
<td>[242]</td>
<td>Migliaresi</td>
<td>1995</td>
<td>18</td>
<td>3 MIU IFN x3/w</td>
<td>no</td>
<td>12</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>[243]</td>
<td>Yamabe</td>
<td>1996</td>
<td>1</td>
<td>10 MIU IFN/d (2 w) → 10 MIU IFN x3/w (6 w)</td>
<td>no</td>
<td>2</td>
<td>1 (100%)</td>
<td>1 (100%)</td>
</tr>
<tr>
<td>[244]</td>
<td>Casaril</td>
<td>1996</td>
<td>36</td>
<td>6 MIU IFN x3/w</td>
<td>no</td>
<td>6</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>[245]</td>
<td>Cohen</td>
<td>1996</td>
<td>16</td>
<td>3 MIU IFN x3/w</td>
<td>variable</td>
<td>6</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>[15]</td>
<td>Adinolfi</td>
<td>1997</td>
<td>50</td>
<td>3 MIU IFN x3/w</td>
<td>no</td>
<td>12</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>[246]</td>
<td>Sarac</td>
<td>1997</td>
<td>1</td>
<td>3 MIU IFN x3/w (6 m) → 10 MIU IFN/d (2 w) → 10 MIU IFN x3/w (6 w)</td>
<td>no</td>
<td>8</td>
<td>1 (100%)</td>
<td>1 (100%)</td>
</tr>
<tr>
<td>No.</td>
<td>Author</td>
<td>Year</td>
<td>Patients</td>
<td>IFN Regimen</td>
<td>Dose</td>
<td>N.</td>
<td>Reduction of Cryocrit</td>
<td>Exitus</td>
</tr>
<tr>
<td>-----</td>
<td>--------</td>
<td>------</td>
<td>----------</td>
<td>--------------</td>
<td>------</td>
<td>----</td>
<td>---------------------</td>
<td>--------</td>
</tr>
<tr>
<td>247</td>
<td>Zuber</td>
<td>1997</td>
<td>2</td>
<td>Pt. 1: 3 MIU IFN x3/w</td>
<td>no</td>
<td>2.5</td>
<td>1(100%)</td>
<td>n.a.</td>
</tr>
<tr>
<td>248</td>
<td>Akri</td>
<td>1997</td>
<td>20</td>
<td>3-5 MIU IFN x3/w</td>
<td>no</td>
<td>6-12</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>249</td>
<td>Casato</td>
<td>1997</td>
<td>31</td>
<td>3 MIU IFN/d (3m) → 3 MIU IFN x3/w</td>
<td>no</td>
<td>>12</td>
<td>n.a.</td>
<td>11/23 (48%)</td>
</tr>
<tr>
<td>250</td>
<td>Mazzaro</td>
<td>1997</td>
<td>42 (7 NHL)</td>
<td>3 MIU IFN x3/w</td>
<td>no</td>
<td>12</td>
<td>n.a.</td>
<td>14%</td>
</tr>
<tr>
<td>251</td>
<td>Donadi</td>
<td>1998</td>
<td>13 Rel</td>
<td>6 MIU IFN x3/w (3m) → 3 MIU IFN x3/w</td>
<td>no</td>
<td>6</td>
<td>85%</td>
<td>38%</td>
</tr>
<tr>
<td>252</td>
<td>Durand</td>
<td>1998</td>
<td>5 NR</td>
<td>RBV</td>
<td>no</td>
<td>10-36</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>253</td>
<td>Gordon</td>
<td>1998</td>
<td>1</td>
<td>1.5 MIU IFN x3/w</td>
<td>yes</td>
<td>1 w (2 injections)</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>254</td>
<td>Scelsa</td>
<td>1998</td>
<td>2</td>
<td>Pt. 1: 3 MIU IFN x3/w (1 m) → prednisone → 1 MIU IFN x3/w</td>
<td>yes</td>
<td>6</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>255</td>
<td>Calleja</td>
<td>1999</td>
<td>18</td>
<td>3 MIU IFN x3/w</td>
<td>yes</td>
<td>3 injections</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>256</td>
<td>Cid</td>
<td>1999</td>
<td>3</td>
<td>3 MIU IFN x3/w</td>
<td>yes</td>
<td>2-4</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>257</td>
<td>Cresta</td>
<td>1999</td>
<td>43</td>
<td>3 MIU IFN x3/w</td>
<td>no</td>
<td>6</td>
<td>42%</td>
<td>14%</td>
</tr>
<tr>
<td>258</td>
<td>Friedman</td>
<td>1999</td>
<td>1</td>
<td>3 MIU IFN x3/w</td>
<td>no</td>
<td>3 w</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>259</td>
<td>Misi</td>
<td>1999</td>
<td>1</td>
<td>3 MIU IFN x3/w</td>
<td>no</td>
<td>16</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>260</td>
<td>Zuckerman</td>
<td>2000</td>
<td>7 (2 NHL)</td>
<td>3 MIU IFN x3/w</td>
<td>no</td>
<td>6</td>
<td>29%</td>
<td>14%</td>
</tr>
<tr>
<td>261</td>
<td>Naarendorp</td>
<td>2001</td>
<td>10</td>
<td>3 MIU IFN x3/w</td>
<td>no</td>
<td>3-60</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>262</td>
<td>Beddhu</td>
<td>2002</td>
<td>10</td>
<td>3 MIU IFN x3/w</td>
<td>no</td>
<td>12</td>
<td>n.a.</td>
<td>10%</td>
</tr>
<tr>
<td>263</td>
<td>Casato</td>
<td>2002</td>
<td>1</td>
<td>3 MIU IFN/d → 3 MIU IFN x3/w → 3 MIU IFN/d</td>
<td>no</td>
<td>18</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Study</td>
<td>Year</td>
<td>Patients</td>
<td>Treatment Details</td>
<td>No</td>
<td>Duration</td>
<td>Response</td>
<td>Side Effects</td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>------</td>
<td>----------</td>
<td>---</td>
<td>----</td>
<td>----------</td>
<td>----------</td>
<td>--------------</td>
<td></td>
</tr>
<tr>
<td>[264] Loustaud-Ratti</td>
<td>2002</td>
<td>2</td>
<td>Pt. 1: 3 MIU IFNx3/w
3 MIU IFNx3/w+RBV (retreatment)
Pt. 2: 3 MIU IFNx3/w → plus RBV</td>
<td>yes</td>
<td>12</td>
<td>1 (100%)</td>
<td>1 (100%)</td>
<td></td>
</tr>
<tr>
<td>[265] Sikaneta</td>
<td>2002</td>
<td>1 OLT</td>
<td>2 MIU IFNx2/w+RBV → Peg-IFN+RBV</td>
<td>yes</td>
<td>10</td>
<td>n.a. (neg in treatment)</td>
<td>n.a. (neg in treatment)</td>
<td></td>
</tr>
<tr>
<td>[266] Bruchfeld</td>
<td>2003</td>
<td>2</td>
<td>Pt. 1: 3 MIU IFNx3/w+RBV
Pt. 2: Peg-IFN+RBV</td>
<td>yes</td>
<td>6</td>
<td>1 (100%)</td>
<td>1 (100%)</td>
<td>vasculitis flare</td>
</tr>
<tr>
<td>[36] Mazzaro</td>
<td>2003</td>
<td>27 (3NHL)
NR or Rel.</td>
<td>3 MIUx3/w+RBV→ Peg-IFN+RBV
Peg-IFN+RBV (n=4)</td>
<td>yes</td>
<td>12</td>
<td>5/24(21%)</td>
<td>5/24(21%)</td>
<td>15 immunol. resp 19 clinical resp (transient)</td>
</tr>
<tr>
<td>[267] Rossi</td>
<td>2003</td>
<td>3</td>
<td>RBV (4 w) → 3 MIU IFNx3/w+RBV</td>
<td>no</td>
<td>13</td>
<td>3 (100%)</td>
<td>3 (100%)</td>
<td>n.a.</td>
</tr>
<tr>
<td>[268] Alric</td>
<td>2004</td>
<td>18</td>
<td>3 MIUx3/w+RBV (n=14) or Peg-IFNx3/w+RBV (n=4)
variable</td>
<td>no</td>
<td>6-24</td>
<td>72%</td>
<td>66.6%</td>
<td>n.a.</td>
</tr>
<tr>
<td>[269] Batisse</td>
<td>2004</td>
<td>1</td>
<td>Peg-IFN</td>
<td>no</td>
<td>1</td>
<td>0%</td>
<td>0%</td>
<td>worsening</td>
</tr>
<tr>
<td>[270] Cacoub</td>
<td>2005</td>
<td>9</td>
<td>Peg-IFN 1.5ug/Kg/w+RBV</td>
<td>variable</td>
<td>10-26</td>
<td>89%</td>
<td>78%</td>
<td>100%<sup>88%°°-56%°°°</sup></td>
</tr>
<tr>
<td>[271] Levine</td>
<td>2005</td>
<td>4</td>
<td>Pt. 1: Peg-IFN+RBV
Pt. 2: IFN
Pt. 3: Peg-IFN+RBV
Pt. 4: IFNx3/w+RBV</td>
<td>no</td>
<td>6</td>
<td>1(100%)</td>
<td>1(100%)</td>
<td>CGs increase</td>
</tr>
<tr>
<td>[272] Mazzaro</td>
<td>2005</td>
<td>18</td>
<td>Peg-IFN 1ug/Kg/w+RBV</td>
<td>no</td>
<td>12</td>
<td>83%</td>
<td>44%</td>
<td>89% complete</td>
</tr>
<tr>
<td>[273] Vigani</td>
<td>2005</td>
<td>1</td>
<td>3 MIU IFNx3/w+RBV</td>
<td>no</td>
<td>48</td>
<td>1(100%)</td>
<td>1(100%)</td>
<td>MCS resp CGs pos</td>
</tr>
<tr>
<td>[274] Saadoun</td>
<td>2006</td>
<td>72 (9 NHL)
3 MIUx3/w+RBV (32 pts)
Peg-IFN+RBV (40 pts)</td>
<td>variable</td>
<td>≥6</td>
<td>63%</td>
<td>53%</td>
<td>47%°°-28%°°°
73%°°-60%°°°
68%°°-58%°°°</td>
<td></td>
</tr>
<tr>
<td>[34] Garini</td>
<td>2007</td>
<td>4</td>
<td>Pt. 1: 3 MIU IFNx3/w+RBV
Pt. 2: 3 MIU IFNx3/w+RBV
Pt. 3: Peg-IFN+RBV
Pt. 4: Peg-IFN+RBV</td>
<td>no</td>
<td>6</td>
<td>1(100%)</td>
<td>1(100%)</td>
<td>1(100%)</td>
</tr>
<tr>
<td>[33] Montalbano</td>
<td>2007</td>
<td>1</td>
<td>Peg-IFN+RBV</td>
<td>no</td>
<td>12</td>
<td>1(100%)</td>
<td>1(100%)</td>
<td>CGs pos</td>
</tr>
<tr>
<td>[275] Parise</td>
<td>2007</td>
<td>31</td>
<td>3 MIU IFNx3/w+RBV</td>
<td>n.a.</td>
<td>6-12</td>
<td>29%</td>
<td>32% utterly</td>
<td></td>
</tr>
<tr>
<td>[31] Joshi</td>
<td>2007</td>
<td>38</td>
<td>IFN (8)
Peg-IFN (5)
Consensus IFN (2)
IFN+RBV (18)
Peg-IFN+RBV (14)</td>
<td>no</td>
<td>6-12</td>
<td>n.a.</td>
<td>25%
50%
71%
25%
62.5%
40%
50%
72%
71%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>Reference</td>
<td>Year</td>
<td>Subjects</td>
<td>Treatment</td>
<td>Response</td>
<td>End of Treatment</td>
<td>Immunological Response</td>
<td>Clinical Response</td>
<td>Notes</td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
<td>----------</td>
<td>-----------</td>
<td>----------</td>
<td>-----------------</td>
<td>-----------------------</td>
<td>-------------------</td>
<td>-------</td>
</tr>
<tr>
<td>Koziolk</td>
<td>2007</td>
<td>1</td>
<td>Peg-IFN+RBV → Peg-IFN + cryoprecipitate apheresis</td>
<td>yes</td>
<td>>6</td>
<td>1(100%)</td>
<td>n.a.</td>
<td>1(100%)</td>
</tr>
<tr>
<td>Trebst</td>
<td>2007</td>
<td>1</td>
<td>Peg-IFN+RBV (14 m) → Peg-IFN (4 m)</td>
<td>no</td>
<td>18</td>
<td>0%</td>
<td>n.a.</td>
<td>100%</td>
</tr>
<tr>
<td>De Blasi</td>
<td>2008</td>
<td>1</td>
<td>Peg-IFN+amantadine</td>
<td>no</td>
<td>4</td>
<td>1 (100%)</td>
<td>1 (100%)</td>
<td>CGs increase</td>
</tr>
<tr>
<td>Landau</td>
<td>2008</td>
<td>49 (9 NHL)</td>
<td>Peg-IFN+RBV</td>
<td>n.a.</td>
<td>>6</td>
<td>n.a.</td>
<td>59.2%</td>
<td>n.a.</td>
</tr>
<tr>
<td>Landau</td>
<td>2008</td>
<td>8 (3 NHL)</td>
<td>IFN+RBV or Peg-IFN+RBV</td>
<td>n.a.</td>
<td>12-25</td>
<td>n.a.</td>
<td>100%</td>
<td>n.a.</td>
</tr>
<tr>
<td>Mazzaro</td>
<td>2011</td>
<td>86</td>
<td>Peg-IFN+RBV</td>
<td>n.a.</td>
<td>6-12</td>
<td>72%</td>
<td>50%</td>
<td>n.a.</td>
</tr>
<tr>
<td>Donato</td>
<td>2013</td>
<td>1 OLT</td>
<td>Peg-IFN+RBV (8 m) → IFN+RBV (4 m)</td>
<td>yes</td>
<td>12</td>
<td>1 (100%)</td>
<td>1 (100%)</td>
<td>1 (100%)</td>
</tr>
<tr>
<td>Saadoun</td>
<td>2014</td>
<td>23</td>
<td>Peg-IFN+RBV+BOC (8) Peg-IFN+RBV+TPV (15)</td>
<td>variable</td>
<td>12</td>
<td>69.6%</td>
<td>n.a.</td>
<td>56.5%</td>
</tr>
<tr>
<td>De Nicola</td>
<td>2014</td>
<td>1</td>
<td>Peg-IFN+RBV+TPV</td>
<td>n.a.</td>
<td>12</td>
<td>1 (100%)</td>
<td>1 (100%)</td>
<td>1 (100%)</td>
</tr>
<tr>
<td>Gragnani</td>
<td>2014</td>
<td>22</td>
<td>Peg-IFN+RBV+BOC</td>
<td>no</td>
<td>12</td>
<td>n.a.</td>
<td>23.8%</td>
<td>n.a.</td>
</tr>
<tr>
<td>Stine</td>
<td>2014</td>
<td>3</td>
<td>Peg-IFN+RBV+SOF</td>
<td>n.a.</td>
<td>3</td>
<td>100%</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>Urraro</td>
<td>2015</td>
<td>1</td>
<td>RTX→Peg-IFN+RBV+BOC</td>
<td>no</td>
<td>10</td>
<td>1(100%)</td>
<td>1(100%)</td>
<td>n.a.</td>
</tr>
<tr>
<td>Saadoun</td>
<td>2015</td>
<td>30</td>
<td>Peg-IFN+RBV+BOC (13) Peg-IFN+RBV+TPV (17)</td>
<td>variable</td>
<td>12</td>
<td>n.a.</td>
<td>20 (66.7%)</td>
<td>n.a.</td>
</tr>
<tr>
<td>Gragnani</td>
<td>2015</td>
<td>121</td>
<td>Peg-IFN+RBV</td>
<td>no</td>
<td>6-12</td>
<td>52%</td>
<td>n.a.</td>
<td>50.4%°°</td>
</tr>
</tbody>
</table>

- ** Partial response
- ** Clearance of CGs
- ** Clinical response

** IFN: interferon; Peg-IFN: pegylated-interferon; RBV: ribavirin; BOC: boceprevir; TPV: telaprevir; SOF: sofosbuvir; MIU: millions of international units; d: day; m: months; w: weeks; n.a.: not available; pt: patient; CS: corticosteroids; EOT: end of treatment; NR: non responder/s; Rel: relapser/s; CGs: cryoglobulins; MCS: Mixed Cryoglobulinemia Syndrome; NHL: Non-Hodgkin’s Lymphoma; immunol: immunological; resp: response; pos: positive; neg: negative.

** Significant reduction of cryocrit values (transient in relapsers and persistent in sustained virological responders)

*** Coincidence between sustained virological and clinical response

°: The clinical response was variably classified in different studies: data are only partially comparable;

°°: complete clinical response

°°°: complete immunological response
Table 4. Interferon-free treatment of cryoglobulinemic vasculitis

<table>
<thead>
<tr>
<th>refer. n°</th>
<th>Author</th>
<th>Year</th>
<th>n° patients</th>
<th>Treatment</th>
<th>CS</th>
<th>Treatment duration (months)</th>
<th>Virological response</th>
<th>Clinical response*</th>
</tr>
</thead>
<tbody>
<tr>
<td>[283]</td>
<td>Sultanik</td>
<td>2015</td>
<td>1</td>
<td>SOF+RBV until week 4 then SOF+DAC</td>
<td>no</td>
<td>3</td>
<td>EOT 1(100%) Sustained 1(100%)</td>
<td>n.a. n.a.</td>
</tr>
<tr>
<td>[42]</td>
<td>Saadoun</td>
<td>2015</td>
<td>24</td>
<td>SOF+RBV</td>
<td>no</td>
<td>6</td>
<td>91.7% 74%</td>
<td>87.5% complete 12.5% partial 86.9%</td>
</tr>
<tr>
<td>[43]</td>
<td>Sise</td>
<td>2016</td>
<td>12</td>
<td>4 SOF+RBV, 8 SOF+SIM</td>
<td>no</td>
<td>3-6</td>
<td>100% 83%</td>
<td>n.a. 33.3% complete 33.3% partial</td>
</tr>
<tr>
<td>[284]</td>
<td>Flemming</td>
<td>2016</td>
<td>1</td>
<td>SOF+LEDIPASVIR+RBV</td>
<td>no</td>
<td>3</td>
<td>100% 100%</td>
<td>n.a. n.a.</td>
</tr>
</tbody>
</table>
| [285] | Sollima | 2016 | 7 | • Ombitasvir/paritaprevir/ritonavir + dasabuvir
• SOF+RBV
• SOF+DCL
• SOF+SIM | no | 3-6 | 100% 100% | n.a. 14.3% |
| [46] | Gragnani | 2016 | 44 | • 18 SOF+RBV
• 12 SOF+SIM (6 + RBV)
• 4 SOF+DCL (1 + RBV)
• 10 SOF+LED (3 + RBV) | no | 3-6 | 100% 100% | 25% full complete 34% complete 25% partial 16% non responder 35% full complete 41% complete 24% partial |
| [47] | Bonacci | 2016 | 30 | • 10 Ombitasvir/paritaprevir/ritonavir+dasabuvir
• 10 SOF+LED
• 2 SOF+SIM
• 3 SIM+DCL
• 2 SOF+DCL
• 3 other | n.a.* | 3-6 | n.a.* n.a.* n.a.* | n.a.* 66.6% complete 16.7% partial |

*°°°°°°°°: partial clinical response

*: The clinical response was variably classified in different studies: data are only partially comparable; n.a.: not available; * it is not possible to complete this field since the analysis reported in the paper includes IFN-based treated patients
Table 5: **TAKE-HOME MESSAGES**

ANTIVIRAL (ETIOLOGIC) TREATMENT OF HCV-EHMs

- IFN-free, DAA-based antiviral therapy should be considered a first line therapeutic measure for HCV-EHMs that does not need urgent/life threatening measures
- All patients with HCV-EHMs without short life expectancy due to non HCV-related comorbidities should be considered for treatment
- When universal treatment may not be scaled up, HCV-EHMs should be considered a prioritization criterion
- The first target of etiologic therapy is the HCV eradication and consequent HCV-EHM improvement
- The degree of HCV-EHM clinical improvement depends on the degree of reversibility of the HCV-induced damage and/or the underlying pathogenic process: early viral eradication is recommended
- IFN-free DAA treatment of HCV-EHMs, should follow general criteria standardized for the treatment of HCV infection, accurately taking into account the HCV-EHMs characteristics
- Both IFN- and RBV-free DAA therapy should be preferred in patients with kidney disease, PCT, ischemic tissue lesions (i.e., skin ulcers, ischemic heart disease), anemia (i.e., in LPDs)
- Therapy of kidney disease imply a careful approach, including accurate evaluation of the kidney damage and choice of DAA treatment and follow-up schedule
- Using IFN-free DAA therapy, the possible “rebound effect” of abrupt withdrawn of non-etiologic therapy should not be interpreted as DAAs side effect

NON ANTIVIRAL (NON ETIOLOGIC) TREATMENT OF HCV-EHMs

- Non-etiologic therapy is the first line treatment in case of HCV-EHMs needing urgent/life threatening measures, but should be useful also in less severe cases before, during or after antiviral therapy in patients with persistent disease
- The combination of IFN-free DAA and non-etiologic therapy can be allowed, especially in severe cases
- Persistence after antiviral therapy of immunological/laboratory abnormalities (i.e., cryoglobulinemia) in the absence of any clinically evident disease, does not justify therapy
- The choice of non-etiologic therapy should always take into account the degree of HCV-related liver damage and, in case of DAAs co-administration, the possible drug-drug interactions
- In clinically moderate-severe autoimmune/lymphoproliferative HCV-EHMs (especially cryoglobulinemic vasculitis) with failure or contraindication to antiviral treatment, Rituximab should be considered a first line therapeutic measure. Combined treatment can be indicated.