中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于网络药理学研究小柴胡汤治疗乙型肝炎的作用机制

蓝绍航 唐秋媛 李娜娜 陶然 廖南盛 蒙荫杰 何草 毛德文

引用本文:
Citation:

基于网络药理学研究小柴胡汤治疗乙型肝炎的作用机制

DOI: 10.3969/j.issn.1001-5256.2021.10.010
基金项目: 

国家自然科学基金 (81760851)

详细信息
    通信作者:

    唐秋媛,tqy9721@163.com

  • 中图分类号: R512.62

Mechanism of action of Xiaochaihu decoction in the treatment of hepatitis B based on network pharmacology

Research funding: 

National Natural Science Foundation of China (81760851)

  • 摘要:   目的  通过网络药理学研究小柴胡汤治疗乙型肝炎的作用机制。  方法  利用TCMSP数据库收集小柴胡汤中7味中药的主要化学成分和作用靶点;通过GeneCards和OMIM数据库获取乙型肝炎相关靶点,利用STRING在线平台构建潜在靶点PPI网络并利用R语言获取GO功能富集分析及KEGG通路分析;运用Cytoscape3.7.2构建“活性成分-核心靶点”网络并对网络进行拓扑分析;最后利用AutoDock vina等软件对网络中度值较高的活性成分与核心靶点进行分子对接和可视化分析。  结果  筛选到小柴胡汤中槲皮素、山奈酚、汉黄芩素、柚皮素等193种主要化学成分和247个相关靶点,其中关键靶点有RELA、MAPK1、TP53、ESR1、EGFR、AKT1等;GO功能富集分析共得到2612条富集结果,主要涉及细胞对化学应激的反应、对药物的反应、氧化应激反应、对脂多糖的反应等生物过程的调节;KEGG通路分析共得到174条通路富集结果,主要涉及乙型肝炎、PI3K-AKT信号通路、MAPK信号通路等;分子对接结果显示主要活性成分与核心靶点的结合力均较强,蛋白结晶复合物构象稳定。  结论  研究初步表明了小柴胡汤通过多成分、多靶点、多通路发挥治疗乙型肝炎的作用机制。

     

  • 图  1  药物靶点和疾病靶点Venny图

    图  2  交集基因GO条形图

    图  3  交集基因KEGG点图

    图  4  关键化合物与核心靶点分子对接图

    注:a,槲皮素-MAPK1;b,山奈酚-RELA;c,黄芩素-TP53;d,柚皮素-ESR1。

    表  1  小柴胡汤部分活性成分信息

    MOL ID MOL Name OB DL 来源药物
    MOL000354 Isorhamnetin 49.6 0.31 柴胡,甘草
    MOL000359 Sitosterol 36.91 0.75 黄芩,甘草
    MOL000422 Kaempferol 41.88 0.24 柴胡,人参,甘草
    MOL000098 Quercetin 46.43 0.28 柴胡,大枣,甘草
    MOL000449 Stigmasterol 43.83 0.76 柴胡,半夏,人参,黄芩,甘草
    MOL000358 Beta-sitosterol 36.91 0.75 黄芩,人参,半夏,生姜,甘草
    MOL005360 Malkangunin 57.71 0.63 人参,甘草
    MOL000787 Fumarine 59.26 0.83 人参,大枣
    MOL002714 Baicalein 33.52 0.21 半夏,黄芩
    MOL002776 Baicalin 40.12 0.75 柴胡,半夏
    MOL002879 Diop 43.59 0.39 黄芩,人参
    MOL003896 7-Methoxy-2-methyl isoflavone 42.56 0.2 甘草
    MOL000497 Licochalcone A 40.79 0.29 甘草
    MOL000392 Formononetin 69.67 0.21 甘草
    MOL004328 Naringenin 59.29 0.21 甘草
    MOL012940 Spiradine A 113.52 0.61 甘草
    MOL008034 21302-79-4 73.52 0.77 大枣
    MOL008647 Moupinamide 86.71 0.26 大枣
    MOL002773 Beta-carotene 37.18 0.58 大枣
    MOL000096 (-)-catechin 49.68 0.24 大枣
    MOL012940 Spiradine A 113.52 0.78 大枣
    MOL006936 10, 13-eicosadienoic 39.99 0.2 半夏
    MOL006937 12, 13-epoxy-9-hydroxynonadeca-7, 10-dienoic acid 42.15 0.24 半夏
    MOL006957 (3S, 6S)-3-(benzyl)-6-(4-hydroxybenzyl) piperazine-2, 5-quinone 46.89 0.27 半夏
    MOL003578 Cycloartenol 38.69 0.78 半夏
    MOL006967 Beta-D-ribofuranoside, xanthine-9 44.72 0.21 半夏
    MOL006129 6-methylgingediacetate2 48.73 0.32 生姜
    MOL001771 Poriferast-5-en-3beta-ol 36.91 0.75 生姜
    MOL008698 Dihydrocapsaicin 47.07 0.19 生姜
    MOL004609 Areapillin 48.96 0.41 柴胡
    MOL013187 Cubebin 57.13 0.64 柴胡
    MOL004624 Longikaurin A 47.72 0.53 柴胡
    MOL004628 Octalupine 47.82 0.28 柴胡
    MOL004644 Sainfuran 79.91 0.23 柴胡
    MOL003648 Inermin 65.83 0.54 人参
    MOL005308 Aposiopolamine 66.65 0.22 人参
    MOL005314 Celabenzine 101.88 0.49 人参
    MOL005321 Frutinone A 65.9 0.34 人参
    MOL005356 Girinimbin 61.22 0.31 人参
    MOL000173 Wogonin 30.68 0.23 黄芩
    MOL002915 Salvigenin 49.07 0.33 黄芩
    MOL002927 Skullcapflavone Ⅱ 69.51 0.44 黄芩
    MOL002932 Panicolin 76.26 0.29 黄芩
    MOL002934 Neobaicalein 104.34 0.44 黄芩
    下载: 导出CSV

    表  2  小柴胡汤度值前10位化学成分基本信息

    NO. MOL ID MOL Name 化学式 Degree 来源药物
    1 MOL000098 槲皮素(quercetin) C15H10O7 100 柴胡,甘草,大枣
    2 MOL000422 山奈酚(kaempferol) C15H10O6 32 柴胡,甘草
    3 MOL000173 汉黄芩素(wogonin) C16H12O5 31 黄芩
    4 MOL004328 柚皮素(naringenin) C15H12O5 25 甘草
    5 MOL000392 芒柄花素(formononetin) C16H12O4 20 甘草
    6 MOL000497 甘草酮(licochalcone A) C21H22O4 20 甘草
    7 MOL002714 黄芩素(baicalein) C15H10O5 19 黄芩,半夏
    8 MOL000354 异鼠李素(isorhamnetin) C16H12O7 18 柴胡,甘草
    9 MOL003896 7-甲氧基-2-甲基异黄酮
    (7-Methoxy-2-methyl isoflavone)
    C17H13NO5 18 甘草
    10 MOL002773 β-胡萝卜素(beta-carotene) C40H56 18 大枣
    下载: 导出CSV

    表  3  关键化合物与核心靶点分子对接

    有效成分 结合能(kcal/mol)
    MAPK1 RELA TP53 ESR1
    槲皮素(quercetin) -7.4 -7.8 -7.0 -8.6
    山奈酚(kaempferol) -7.2 -7.1 -8.1 -7.2
    汉黄芩素(wogonin) -9.4 -8.3 -8.9 -7.5
    柚皮素(naringenin) -8.6 -7.7 -7.8 -9.1
    下载: 导出CSV
  • [1] SONG QW, LI KL, ZHANG GM, et al. Spatial analysis on hepatitis B in China, 2005-2014[J]. Chin J Vacc Immun, 2015, 21(6): 601-605. DOI: 10.3969/j.issn.1001-9448.2009.12.003.

    宋全伟, 李克莉, 张国民, 等. 中国2005~2014年乙型病毒性肝炎空间流行病学特征分析[J]. 中国疫苗和免疫, 2015, 21(6): 601-605. DOI: 10.3969/j.issn.1001-9448.2009.12.003.
    [2] YAN LB, TANG H. Progression and prospect in the diagnosis and treatment of chronic hepatitis B[J]. Chin J Practical Internal Med, 2016, 13(2): 5-9. DOI: 10.3969/j.issn.1672-6170.2016.02.002.

    严丽波, 唐红. 慢性乙型肝炎诊治进展和展望[J]. 实用医院临床杂志, 2016, 13(2): 5-9. DOI: 10.3969/j.issn.1672-6170.2016.02.002.
    [3] LIU L, LI L. Interpretation of 2019 guideline of prevention and treatment for chronic hepatitis B[J]. J Trop Dis Parasitol, 2020, 18(2): 75-80. DOI: 10.3969/j.issn.1672-2302.2020.02.003.

    刘磊, 李磊. 《慢性乙型肝炎防治指南》(2019年版)解读与思考[J]. 热带病与寄生虫学, 2020, 18(2): 75-80. DOI: 10.3969/j.issn.1672-2302.2020.02.003.
    [4] ZHAO LR, DOU XG. Withdrawal criteria of antiviral therapy for chronic hepatitis B[J]. Mod Med Health, 2019, 35(22): 3411-3413. DOI: 10.3969/j.issn.1009-5519.2019.22.002.

    赵连荣, 窦晓光. 慢性乙型肝炎抗病毒治疗的停药标准[J]. 现代医药卫生, 2019, 35(22): 3411-3413. DOI: 10.3969/j.issn.1009-5519.2019.22.002.
    [5] QI XM, LI Y, QIN XM. Research Progress on clinical application and pharmacological action of Xiaochaihu Decoction[J]. J Shanxi College Tradit Chin Med, 2007, 8(3): 59-60. DOI: 10.3969/j.issn.1671-0258.2007.03.040.

    柒小梅, 李英, 秦雪梅. 小柴胡汤临床应用与药理作用研究进展[J]. 山西中医学院学报, 2007, 8(3): 59-60. DOI: 10.3969/j.issn.1671-0258.2007.03.040.
    [6] ZHOU WX, CHENG XR, ZHANG YX. Network pharmacology- a new philosophy for understanding of drug action and discovery of new drugs[J]. Chin J Pharmacol Toxicol, 2012, 26(1): 4-9. DOI: 10.3867/j.issn.1000-3002.2012.01.002.

    周文霞, 程肖蕊, 张永祥. 网络药理学: 认识药物及发现药物的新理念[J]. 中国药理学与毒理学杂志, 2012, 26(1): 4-9. DOI: 10.3867/j.issn.1000-3002.2012.01.002.
    [7] LIU ZH, SUN XB. Network pharmacology: New opportunity for the modernization of traditional Chinese medicine[J]. Acta Pharmaceutica Sinica, 2012, 47(6): 696-703. DOI: 10.16438/j.0513-4870.2012.06.001.

    刘志华, 孙晓波. 网络药理学: 中医药现代化的新机遇[J]. 药学学报, 2012, 47(6): 696-703. DOI: 10.16438/j.0513-4870.2012.06.001.
    [8] WANG Y, ZHANG J, XIN FR, et al. Prediction of target and pathway of berberine in the treatment of atrial fibrillation based on network pharmacology[J]. Traum Crit Med, 2021, 9(3): 165-170. DOI: 10.16048/j.issn.2095-5561.2021.03.01.

    王洋, 张建, 辛芳冉, 等. 基于网络药理学预测小檗碱治疗心房颤动作用靶点及通路[J]. 创伤与急危重病医学, 2021, 9(3): 165-170. DOI: 10.16048/j.issn.2095-5561.2021.03.01.
    [9] YE DY. Introduction to computer aided drug design[M]. Beijing: Chemical Industry Press, 2004: 52-56.

    叶德永. 计算机辅助药物设计导论[M]. 北京: 化学工业出版社, 2004: 52-56.
    [10] XIE LH, LIN XY, HE P, et al. Research on Shuanghuanglian Oral Liquid for treatment of COVID-19 based on network pharmacology and molecular docking technology[J]. J Tradit Chin Med Univ Hunan, 2020, 40(9): 1123-1131. DOI: 10.3969/j.issn.1674-070X.2020.09.016.

    谢丽华, 蔺晓源, 何飘, 等. 基于网络药理学与分子对接法探寻双黄连口服液治疗新型冠状病毒肺炎的有效成分及机制研究[J]. 湖南中医药大学学报, 2020, 40(9): 1123-1131. DOI: 10.3969/j.issn.1674-070X.2020.09.016.
    [11] ZHOU WJ, ZHANG M, YAN YC, et al. Molecular mechanism of Huoxiang(Pogostemonis Herba) in treatment of corona virus disease 2019(COVID-19) based on network pharmacology and molecular docking[J]. J Pract Trad Chin Int Med, 2020, 34(9): 1-4. DOI: 10.13729/j.issn.1671-7813.Z20200366.

    周文静, 张萌, 闫宇晨, 等. 基于网络药理学与分子对接探讨藿香防治新型冠状病毒肺炎的分子机制[J]. 实用中医内科杂志, 2020, 34(9): 1-4. DOI: 10.13729/j.issn.1671-7813.Z20200366.
    [12] LU TT, ZHAO GP. Advances in mechanisms of Xiao Chaihu Tang preventing and treating liver diseases[J]. World Chin J Dig, 2008, 16(9): 971-974. DOI: 10.3969/j.issn.1009-3079.2008.09.012.

    陆婷婷, 赵国平. 小柴胡汤防治肝病机制研究进展[J]. 世界华人消化杂志, 2008, 16(9): 971-974. DOI: 10.3969/j.issn.1009-3079.2008.09.012.
    [13] WU FR, NING LJ, ZHOU R. Protective effects of Xiaochaihu Decoction on chemical hepatic fibrosis in mice[J]. Chin J Clin Pharmacol Ther, 2020, 25(5): 481-488. DOI: 10.12092/j.issn.1009-2501.2020.05.001.

    吴芙蓉, 宁丽娟, 周冉. 小柴胡汤对化学性肝纤维化小鼠的保护作用[J]. 中国临床药理学与治疗学, 2020, 25(5): 481-488. DOI: 10.12092/j.issn.1009-2501.2020.05.001.
    [14] XU T, CHEN X. Clinical application of Xiaochaihu Decoction in digestive system diseases[J/CD]. J Cardiov Dis Integr Tradit Western Med, 2020, 8(29): 153, 156. DOI: 10.16282/j.cnki.cn11-9336/r.2020.29.106.

    徐仝, 陈旭. 小柴胡汤在消化系统疾病中的临床应用[J/CD]. 中西医结合心血管病电子杂志, 2020, 8(29): 153, 156. DOI: 10.16282/j.cnki.cn11-9336/r.2020.29.106.
    [15] SHI HJ. Clinical efficacy of entecavir combined with Xiaochaihu Decoction in the treatment of chronic hepatitis B cirrhosis[J]. Shenzhen J Integr Tradit Chin West Med, 2020, 30(15): 40-42. DOI: 10.16458/j.cnki.1007-0893.2020.15.020.

    师会杰. 恩替卡韦联合小柴胡汤治疗慢性乙型肝炎肝硬化临床疗效[J]. 深圳中西医结合杂志, 2020, 30(15): 40-42. DOI: 10.16458/j.cnki.1007-0893.2020.15.020.
    [16] ZHAI XZ. Clinical observation of Xiaochaihu Decoction combined with entecavir in the treatment of chronic hepatitis B with liver depression and spleen deficiency[J]. J Pract Tradit Chin Med, 2020, 36(1): 39-40. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYAO202001034.htm

    翟雪珍. 小柴胡汤加减联合恩替卡韦治疗慢性乙型病毒性肝炎肝郁脾虚型疗效观察[J]. 实用中医药杂志, 2020, 36(1): 39-40. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYAO202001034.htm
    [17] CHENG Z, SUN G, GUO W, et al. Inhibition of hepatitis B virus replication by quercetin in human hepatoma cell lines[J]. Virol Sin, 2015, 30(4): 261-268. DOI: 10.1007/s12250-015-3584-5.
    [18] PARVEZ MK, AL-DOSARI MS, ARBAB AH, et al. Bioassay-guided isolation of anti-hepatitis B virus flavonoid myricetin-3-O-rhamnoside along with quercetin from Guiera senegalensis leaves[J]. Saudi Pharm J, 2020, 28(5): 550-559. DOI: 10.1016/j.jsps.2020.03.006.
    [19] SAMUEL VT, SHULMAN GI. Nonalcoholic fatty liver disease as a nexus of metabolic and hepatic diseases[J]. Cell Metab, 2018, 27(1): 22-41. DOI: 10.1016/j.cmet.2017.08.002.
    [20] WU L, ZHANG Q, MO W, et al. Quercetin prevents hepatic fibrosis by inhibiting hepatic stellate cell activation and reducing autophagy via the TGF-β1/Smads and PI3K/Akt pathways[J]. Sci Rep, 2017, 7(1): 9289. DOI: 10.1038/s41598-017-09673-5.
    [21] CHEN YH, ZHOU KY, YUAN HY. Research progress on pharmacodynamics of kaempferol[J]. Guangdong Med, 2010, 31(8): 1064-1066. DOI: 10.3969/j.issn.1001-9448.2010.08.058.

    陈育华, 周克元, 袁汉尧. 山奈酚药效的研究进展[J]. 广东医学, 2010, 31(8): 1064-1066. DOI: 10.3969/j.issn.1001-9448.2010.08.058.
    [22] KIM JK, PARK SU. Recent studies on kaempferol and its biological and pharmacological activities[J]. EXCLI J, 2020, 19: 627-634. http://www.researchgate.net/publication/342243289_Recent_studies_on_kaempferol_and_its_biological_and_pharmacological_activities/download
    [23] WANG ZH, LIANG T, LI T, et al. Effect of kaempferol on growth and apoptosis of human hepatoma cell line Huh7[J]. Guangdong Med, 2014, 35(2): 192-194. DOI: 10.13820/j.cnki.gdyx.2014.02.009.

    王铮华, 梁统, 李涛, 等. 山奈酚对人肝癌细胞Huh7生长及凋亡的影响[J]. 广东医学, 2014, 35(2): 192-194. DOI: 10.13820/j.cnki.gdyx.2014.02.009.
    [24] HUANG RL, CHEN CC, HUANG HL, et al. Anti-hepatitis B virus effects of wogonin isolated from Scutellaria baicalensis[J]. Planta Med, 2000, 66(8): 694-698. DOI: 10.1055/s-2000-9775.
    [25] GUO Q, ZHAO L, YOU Q, et al. Anti-hepatitis B virus activity of wogonin in vitro and in vivo[J]. Antiviral Res, 2007, 74(1): 16-24. DOI: 10.1016/j.antiviral.2007.01.002.
    [26] SI LL, LI L, CHEN RJ, et al. Combination inhibitory effect of baicalein and wogonin on entecavir-resistant HBV and the optimal ratio between the two components[J]. Shandong Med J, 2019, 59(36): 22-26. DOI: 10.3969/j.issn.1002-266X.2019.36.006.

    思兰兰, 李乐, 陈容娟, 等. 黄芩素和汉黄芩素联合应用对恩替卡韦耐药乙型肝炎病毒的抑制作用及最佳配比观察[J]. 山东医药, 2019, 59(36): 22-26. DOI: 10.3969/j.issn.1002-266X.2019.36.006.
    [27] REHMAN K, KHAN Ⅱ, AKASH M, et al. Naringenin downregulates inflammation-mediated nitric oxide overproduction and potentiates endogenous antioxidant status during hyperglycemia[J]. J Food Biochem, 2020. DOI: 10.1111/jfbc.13422.[Online ahead of print]
    [28] LI PB, WANG YG, WU H, et al. An overview of pharmacological actions of naringin and its aglycone naringenin on respiratory diseases[J]. J PHARM Research Med, 2020, 39(5): 249-255. DOI: 10.13506/j.cnki.jpr.2020.05.001.

    李沛波, 王永刚, 吴灏, 等. 柚皮苷及其苷元柚皮素的呼吸系统药理作用研究概述[J]. 药学研究, 2020, 39(5): 249-255. DOI: 10.13506/j.cnki.jpr.2020.05.001.
    [29] FAN H, ZHANG H, PASCUZZI PE, et al. Hepatitis B virus X protein induces EpCAM expression via active DNA demethylation directed by RelA in complex with EZH2 and TET2[J]. Oncogene, 2016, 35(6): 715-726. DOI: 10.1038/onc.2015.122.
    [30] YU L, LIU X, HAN C, et al. XRCC1 rs25487 genetic variant and TP53 mutation at codon 249 predict clinical outcomes of hepatitis B virus-related hepatocellular carcinoma after hepatectomy: A cohort study for 10 years' follow up[J]. Hepatol Res, 2016, 46(8): 765-774. DOI: 10.1111/hepr.12611.
    [31] ZHOU HB, HU HP. Challenges in precise treatment for primary liver cancer based on gene mutation[J]. J Clin Hepatol, 2017, 33(7): 1209-1210. DOI: 10.3969/j.issn.1001-5256.2017.07.001.

    周华邦, 胡和平. 基于基因突变的原发性肝癌精准治疗的挑战[J]. 临床肝胆病杂志, 2017, 33(7): 1209-1210. DOI: 10.3969/j.issn.1001-5256.2017.07.001.
    [32] WANG SH, CHEN PJ, YEH SH. Gender disparity in chronic hepatitis B: Mechanisms of sex hormones[J]. J Gastroenterol Hepatol, 2015, 30(8): 1237-1245. DOI: 10.1111/jgh.12934.
    [33] GAO YF, WEI SF, ZHANG YF, et al. Association of estrogen receptor α polymorphisms with chronic hepatitis B virus infection[J]. J Prac Hepatol, 2009, 12(2): 95-97, 100. DOI: 10.3969/j.issn.1672-5069.2009.02.005.

    郜玉峰, 魏少峰, 张亚飞, 等. 雌激素受体基因α多态性与乙型肝炎病毒感染慢性化的相关性研究[J]. 实用肝脏病杂志, 2009, 12(2): 95-97, 100. DOI: 10.3969/j.issn.1672-5069.2009.02.005.
    [34] REN W, WANG X, LI P, et al. Association of Pvu Ⅱ and Xba I polymorphisms in estrogen receptor alpha (ESR1) gene with the chronic hepatitis B virus infection[J]. Prog Mod Biomed, 2018, 18(24): 4607-4613. DOI: 10.13241/j.cnki.pmb.2018.24.002.

    任雯, 王霞, 李平, 等. 雌激素受体α(ESR1)基因PvuⅡ和XbaⅠ位点基因多态性与HBV慢性感染的相关性研究[J]. 现代生物医学进展, 2018, 18(24): 4607-4613. DOI: 10.13241/j.cnki.pmb.2018.24.002.
    [35] MA X, XIA W. Research progress on signaling pathways of Chinese medicine in inhibiting proliferation and inducing apoptosis of hepatoma carcinoma cells[J]. Shanghai J Tradit Chin Med, 2018, 52(8): 98-101. DOI: 10.16305/j.1007-1334.2018.06.026.

    马星, 夏伟. 中药抗肝癌细胞增殖和诱导细胞凋亡的信号通路研究进展[J]. 上海中医药杂志, 2018, 52(8): 98-101. DOI: 10.16305/j.1007-1334.2018.06.026.
    [36] YU ZH, CAI M, XIANG J, et al. PI3K/Akt pathway contributes to neuroprotective effect of Tongxinluo against focal cerebral ischemia and reperfusion injury in rats[J]. J Ethnopharmacol, 2016, 181: 8-19. DOI: 10.1016/j.jep.2016.01.028.
    [37] SHI J, ZHENG L, LIN Z, et al. Study of pharmacokinetic profiles and characteristics of active components and their metabolites in rat plasma following oral administration of the water extract of Astragali radix using UPLC-MS/MS[J]. J Ethnopharmacol, 2015, 169: 183-194. DOI: 10.1016/j.jep.2015.04.019.
    [38] COORAY S. The pivotal role of phosphatidylinositol 3-kinase-Akt signal transduction in virus survival[J]. J Gen Virol, 2004, 85(Pt 5): 1065-1076. DOI: 10.1099/vir.0.19771-0.
    [39] KANG-PARK S, IM JH, LEE JH, et al. PTEN modulates hepatitis B virus-X protein induced survival signaling in Chang liver cells[J]. Virus Res, 2006, 122(1-2): 53-60. DOI: 10.1016/j.virusres.2006.06.010.
    [40] SHIH WL, KUO ML, CHUANG SE, et al. Hepatitis B virus X protein inhibits transforming growth factor-beta -induced apoptosis through the activation of phosphatidylinositol 3-kinase pathway[J]. J Biol Chem, 2000, 275(33): 25858-25864. DOI: 10.1074/jbc.M003578200.
    [41] LIU RD, RUAN LW. PI3K-Akt signaling pathway and viral infection[J]. Biot Bulletin Med, 2013, 6: 53-62. DOI: 10.13560/j.cnki.biotech.bull.1985.2013.06.023.

    刘荣雕, 阮灵伟. PI3K-Akt信号通路与病毒感染[J]. 生物技术通报, 2013, 6: 53-62. DOI: 10.13560/j.cnki.biotech.bull.1985.2013.06.023.
    [42] LIU Y, WEI J, XIAO B, et al. Effect of hepatitis B X-interacting protein on proliferation and migration of hepatoma cells by regulating PI3K/Akt signaling pathway[J]. Chin J Immunol, 2020, 36(7): 837-841. DOI: 10.3969/j.issn.1000-484X.2020.07.014.

    刘阳, 魏俊, 肖贝, 等. 乙型肝炎病毒X蛋白结合蛋白可能通过PI3K/Akt信号通路影响肝癌细胞的增殖和迁移[J]. 中国免疫学杂志, 2020, 36(7): 837-841. DOI: 10.3969/j.issn.1000-484X.2020.07.014.
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  670
  • HTML全文浏览量:  260
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-10
  • 录用日期:  2021-03-15
  • 出版日期:  2021-10-20
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回