中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

极化骨髓巨噬细胞移植对CCl4诱导的肝纤维化大鼠模型的影响

简迅 王丹阳 许燕楠 陈佳美 刘伟 陈高峰 张华 刘平 慕永平

引用本文:
Citation:

极化骨髓巨噬细胞移植对CCl4诱导的肝纤维化大鼠模型的影响

DOI: 10.3969/j.issn.1001-5256.2021.12.020
基金项目: 

国家自然基金面上项目 (81573948);

国家自然基金面上项目 (81874390)

详细信息
    通信作者:

    慕永平,ypmu8888@126.com

    简迅、王丹阳对本文贡献相同,同为第一作者。

  • 中图分类号: R575.2

Effect of polarized bone marrow-derived macrophage transplantation on the progression of CCl4-induced liver fibrosis in rats

Research funding: 

The National Natural Science Foundation of China (81573948);

The National Natural Science Foundation of China (81874390)

  • 摘要:   目的  观察极化骨髓巨噬细胞(BMDM)移植对CCl4诱导实验大鼠模型肝纤维化进展的影响。  方法  分离大鼠BMDM,分别使用脂多糖(5 ng/mL)诱导其分化为M1(M1-BMDM)表型,L929细胞上清诱导其分化为M2(M2-BMDM)表型。以30% CCl4皮下注射6周建立大鼠肝纤维化模型,于第7周开始模型大鼠随机分为模型对照组(M)、M1-BMDM组和M2-BMDM组,分别予以生理盐水、M1-BMDM、M2-BMDM经尾静脉一次性注射,并以30% CCl4持续造模至第9周末。观察肝功能、肝组织病理、肝组织羟脯氨酸(Hyp)含量、肝星状细胞活化、肝纤维化及炎症相关细胞因子表达水平等。计量资料采用x±s表示,多组间比较采用方差分析,进一步两两比较采用SNK-q检验。  结果  与M组相比,M1-BMDM和M2-BMDM均可明显抑制肝脏炎症反应和肝纤维化进展,显著降低血清ALT、AST活性(P值均<0.01),显著降低肝组织Hyp含量(P值均<0.05)。M1-BMDM和M2-BMDM可显著抑制肝星状细胞活化,显著降低肝纤维化相关因子TGFβ、Col1a1、Col4 mRNA表达水平(P值均<0.05)。M1-BMDM和M2-BMDM均可显著提高肝组织CD163蛋白表达水平(P值均<0.01),且M2-BMDM组显著高于M1-BMDM组(P<0.05);两者均可显著降低肝组织MMP-2和TIMP-1 mRNA表达水平(P值均<0.05),显著提高MMP-13 mRNA表达水平(P值均<0.01);且M2-BMDM可显著降低肝组织CD68蛋白表达水平(P<0.01)。M1-BMDM和M2-BMDM均可显著提高肝组织IL-6和IL-10 mRNA以及白蛋白表达水平(P值均<0.05),且M2-BMDM组以上指标均显著高于M1-BMDM组(P值均<0.05)。  结论  M1-BMDM和M2-BMDM均可有效抑制CCl4诱导大鼠肝纤维化进展,其共同机制可能与抑制肝星状细胞活化、促进抗炎巨噬细胞活化有关; 且M2-BMDM还可抑制促炎巨噬细胞活化,综合干预效应优于M1-BMDM。

     

  • 图  1  M1-BMDM和M2-BMDM鉴定

    注:a,M1-BMDM CD11b/c免疫荧光染色(×600);b,M1-BMDM CD68免疫荧光染色(×600);c,M2-BMDM CD206免疫荧光染色(×600); d,M2-BMDM CD163免疫荧光染色(×600); e,M1-BMDM细胞流式细胞鉴定; f,M2-BMDM细胞流式细胞鉴定, 在进行FACS检验的样本细胞中, 93.1%是单一且唯一的细胞群, 这群细胞中CD206+细胞占比为98.9%, CD68+细胞占比为10.8%; g,N组、M1-BMDM组和M2-BMDMCD206组CD68 mRNA的表达水平(n=3),* *P<0.01。

    图  2  M1-BMDM和M2-BMDM可显著抑制肝脏炎症反应和肝纤维化进展

    注:a,HE染色(×100); b,天狼猩红胶原染色(×100); c,血清ALT、AST活性(n=6); d,肝组织Hyp含量(n=6); e,天狼猩红胶原染色半定量分析(n=6)。* P<0.05, * *P<0.01。

    图  3  M1-BMDM和M2-BMDM可显著抑制HSC活化

    注:a,αSMA免疫染色(×100);b,αSMA免疫印迹(n=6);c,αSMA免疫印迹灰度积分比值; d,αSMA、TGFβ1、Col1a1、Col4 mRNA表达水平(n=6)。* P<0.05, * *P<0.01。

    图  4  M1-BMDM和M2-BMDM对肝脏巨噬细胞活化、胶原酶及炎症因子表达的影响

    注:a,CD68免疫染色(×200); b,CD163免疫染色(×200); c,CD206免疫染色(×200);d,CD68、CD163免疫印迹(n=6); e,CD68、CD163免疫印迹灰度积分比值; f,MMP-2/-9/-13、TIPM-1 mRNA表达水平(n=6);g,IL-4/-6/-10、TNFα mRNA表达水平(n=6);h,Alb免疫印迹(n=6);i,Alb免疫印迹灰度积分比值。* P<0.05, * *P<0.01。

  • [1] RAMACHANDRAN P, DOBIE R, WILSON-KANAMORI JR, et al. Resolving the fibrotic niche of human liver cirrhosis at single-cell level[J]. Nature, 2019, 575(7783): 512-518. DOI: 10.1038/s41586-019-1631-3.
    [2] KARLMARK KR, WEISKIRCHEN R, ZIMMERMANN HW, et al. Hepatic recruitment of the inflammatory Gr1+ monocyte subset upon liver injury promotes hepatic fibrosis[J]. Hepatology, 2009, 50(1): 261-274. DOI: 10.1002/hep.22950.
    [3] VANNELLA KM, WYNN TA. Mechanisms of organ injury and repair by macrophages[J]. Annu Rev Physiol, 2017, 79: 593-617. DOI: 10.1146/annurev-physiol-022516-034356.
    [4] ORECCHIONI M, GHOSHEH Y, PRAMOD AB, et al. Macrophage polarization: Different gene signatures in M1(LPS+) vs. classically and M2(LPS-) vs. alternatively activated macrophages[J]. Front Immunol, 2019, 10: 1084. DOI: 10.3389/fimmu.2019.01084.
    [5] MURRAY PJ, ALLEN JE, BISWAS SK, et al. Macrophage activation and polarization: Nomenclature and experimental guidelines[J]. Immunity, 2014, 41(1): 14-20. DOI: 10.1016/j.immuni.2014.06.008.
    [6] DAVIS BK. Derivation of macrophages from mouse bone marrow[J]. Methods Mol Biol, 2019, 1960: 41-55. DOI: 10.1007/978-1-4939-9167-9_3.
    [7] WATANABE Y, TSUCHIYA A, SEINO S, et al. Mesenchymal stem cells and induced bone marrow-derived macrophages synergistically improve liver fibrosis in mice[J]. Stem Cells Transl Med, 2019, 8(3): 271-284. DOI: 10.1002/sctm.18-0105.
    [8] PINEDA-TORRA I, GAGE M, de JUAN A, et al. Isolation, culture, and polarization of murine bone marrow-derived and peritoneal macrophages[J]. Methods Mol Biol, 2015, 1339: 101-109. DOI: 10.1007/978-1-4939-2929-0_6.
    [9] MILY A, KALSUM S, LORETI MG, et al. Polarization of M1 and M2 human monocyte-derived cells and analysis with flow cytometry upon mycobacterium tuberculosis infection[J]. J Vis Exp, 2020, (163). DOI: 10.3791/61807.
    [10] JAMALL IS, FINELLI VN, QUE HEE SS. A simple method to determine nanogram levels of 4-hydroxyproline in biological tissues[J]. Anal Biochem, 1981, 112(1): 70-75. DOI: 10.1016/0003-2697(81)90261-x.
    [11] MU YP, OGAWA T, KAWADA N. Reversibility of fibrosis, inflammation, and endoplasmic reticulum stress in the liver of rats fed a methionine-choline-deficient diet[J]. Lab Invest, 2010, 90(2): 245-256. DOI: 10.1038/labinvest.2009.123.
    [12] PRADERE JP, KLUWE J, DE MINICIS S, et al. Hepatic macrophages but not dendritic cells contribute to liver fibrosis by promoting the survival of activated hepatic stellate cells in mice[J]. Hepatology, 2013, 58(4): 1461-1473. DOI: 10.1002/hep.26429.
    [13] HUME DA, IRVINE KM, PRIDANS C. The mononuclear phagocyte system: The relationship between monocytes and macrophages[J]. Trends Immunol, 2019, 40(2): 98-112. DOI: 10.1016/j.it.2018.11.007.
    [14] MA PF, GAO CC, YI J, et al. Cytotherapy with M1-polarized macrophages ameliorates liver fibrosis by modulating immune microenvironment in mice[J]. J Hepatol, 2017, 67(4): 770-779. DOI: 10.1016/j.jhep.2017.05.022.
    [15] FRIEDMAN SL. Hepatic stellate cells: Protean, multifunctional, and enigmatic cells of the liver[J]. Physiol Rev, 2008, 88(1): 125-172. DOI: 10.1152/physrev.00013.2007.
    [16] NOVO E, MARRA F, ZAMARA E, et al. Dose dependent and divergent effects of superoxide anion on cell death, proliferation, and migration of activated human hepatic stellate cells[J]. Gut, 2006, 55(1): 90-97. DOI: 10.1136/gut.2005.069633.
    [17] RAMACHANDRAN P, IREDALE JP. Macrophages: Central regulators of hepatic fibrogenesis and fibrosis resolution[J]. J Hepatol, 2012, 56(6): 1417-1419. DOI: 10.1016/j.jhep.2011.10.026.
    [18] FENG M, DING J, WANG M, et al. Kupffer-derived matrix metalloproteinase-9 contributes to liver fibrosis resolution[J]. Int J Biol Sci, 2018, 14(9): 1033-1040. DOI: 10.7150/ijbs.25589.
    [19] GUO J, LUO Y, YIN F, et al. Overexpression of tumor necrosis factor-like ligand 1 A in myeloid cells aggravates liver fibrosis in mice[J]. J Immunol Res, 2019, 2019: 7657294. DOI: 10.1155/2019/7657294.
    [20] GORDON S, MARTINEZ FO. Alternative activation of macrophages: Mechanism and functions[J]. Immunity, 2010, 32(5): 593-604. DOI: 10.1016/j.immuni.2010.05.007.
    [21] TAO Y, WANG M, CHEN E, et al. Liver Regeneration: Analysis of the main relevant signaling molecules[J]. Mediators Inflamm, 2017, 2017: 4256352. DOI: 10.1155/2017/4256352.
    [22] CRESSMAN DE, GREENBAUM LE, DEANGELIS RA, et al. Liver failure and defective hepatocyte regeneration in interleukin-6-deficient mice[J]. Science, 1996, 274(5291): 1379-1383. DOI: 10.1126/science.274.5291.1379.
    [23] TAUB R. Liver regeneration: From myth to mechanism[J]. Nat Rev Mol Cell Biol, 2004, 5(10): 836-847. DOI: 10.1038/nrm1489.
    [24] KANG LI, MARS WM, MICHALOPOULOS GK. Signals and cells involved in regulating liver regeneration[J]. Cells, 2012, 1(4): 1261-1292. DOI: 10.3390/cells1041261.
    [25] ELCHANINOV AV, FATKHUDINOV TK, VISHNYAKOVA PA, et al. Phenotypical and functional polymorphism of liver resident macrophages[J]. Cells, 2019, 8(9): 1032-1053. DOI: 10.3390/cells8091032.
    [26] CAMPANA L, ESSER H, HUCH M, et al. Liver regeneration and inflammation: From fundamental science to clinical applications[J]. Nat Rev Mol Cell Biol, 2021, 22(9): 608-624. DOI: 10.1038/s41580-021-00373-7.
    [27] BARBAY V, HOUSSARI M, MEKKI M, et al. Role of M2-like macrophage recruitment during angiogenic growth factor therapy[J]. Angiogenesis, 2015, 18(2): 191-200. DOI: 10.1007/s10456-014-9456-z.
    [28] DONG X, LIU J, XU Y, et al. Role of macrophages in experimental liver injury and repair in mice[J]. Exp Ther Med, 2019, 17(5): 3835-3847. DOI: 10.3892/etm.2019.7450.
  • 加载中
图(4)
计量
  • 文章访问数:  914
  • HTML全文浏览量:  414
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-22
  • 录用日期:  2021-07-28
  • 出版日期:  2021-12-20
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回