中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于氧化应激探讨中药活性成分防治非酒精性脂肪性肝病的研究进展

周静 张德新

引用本文:
Citation:

基于氧化应激探讨中药活性成分防治非酒精性脂肪性肝病的研究进展

DOI: 10.3969/j.issn.1001-5256.2021.12.046
基金项目: 

中央引导地方科技发展专项 (ZYYD2020000147)

详细信息
    通信作者:

    张德新,dexzhang@hbtcm.edu.cn

  • 中图分类号: R575.5

Research advances in active components of traditional Chinese medicine in prevention and treatment of nonalcoholic fatty liver disease based on oxidative stress

Research funding: 

Special projects for the central government to guide the development of local science and technology (ZYYD2020000147)

  • 摘要: 非酒精性脂肪肝病(NAFLD)是一种多因素病理性疾病,尽管尚未完全了解NAFLD发生的分子机制,但氧化应激被认为在该过程中起关键作用,影响多种生理功能。近年来中药活性成分用于防治NAFLD成为研究热点,从抗氧化应激角度综述了中药活性成分在治疗NAFLD中的作用,为防治NAFLD提供科学依据。

     

  • 表  1  中药活性成分对NAFLD的抗氧化作用

    活性成分分类 名称 NAFLD模型 抗氧化作用表现 参考文献
    黄酮类 黄芩苷 HFC诱导小鼠12周 MDA、4-HNE、8-OHdG、CYP2E1、JNK↓, GPX、SOD↑ [27]
    水飞蓟宾 MCD饮食诱导C57BL/6小鼠8周 CYP2E1、4-HNE、MDA↓, SOD、GCLM、GCLC、NQO1、HMOX1、GSTM1↑ [28]
    虎杖苷 HFD诱导SD大鼠8周 MDA↓,SOD、GSH↑ [29]
    槲皮素 HFD诱导C57BLKS/J (db/db)小鼠16周 CYP2E1、GRP78、CHOP↓ [30]
    多糖类 黄芪多糖 HFD诱导SD大鼠6周 MDA↓, T-SOD↑ [31]
    玉米须多糖 HFD诱导SD大鼠12周 ROS、NOX4↓, miR-146a↑ [32]
    灵芝多糖 HFD喂养C57BL/KsJ-db/db大鼠8周 MDA↓, SOD、GSH-Px、CAT、Nrf2、HO-1↑ [33]
    枸杞多糖 HFD诱导SD大鼠10周 MDA↓, SOD、PGC1α↑ [34]
    多酚类 姜黄素 HFD诱导Wistar大鼠14 d MDA、NO↓, TAC、SOD、GSH-Px↑ [35]
    白藜芦醇 HFD诱导C57BL/6J小鼠16周 MDA↓, SOD、GSH-Px↑ [37]
    绿茶多酚 HFD诱导SD大鼠8周 MDA、ROS↓, SOD、GSH、TAOC↑ [38]
    生物碱类 小檗碱 HFD诱导C57BL/6J小鼠8周 LCAD乙酰化↓, SIRT3↑ [39]
    盐酸小檗碱 HFD诱导SD大鼠12周 MDA、ROS↓, Nrf2↑ [40]
    川芎嗪 HFD诱导SD大鼠12周 MDA、ROS↓, GSH-Px↑ [41]
    苦参碱 PA 0.25 mmol/L诱导HepG2 MDA、ROS↓, GSH-Px↑ [42]
    荷叶碱 HFD诱导SD大鼠8周 MDA、CYP酶↓, SOD、GSH-Px↑ [43]
    萜类 人参皂苷Rg2 HFD诱导WT C57BL/6J小鼠12周,小鼠
    原代肝细胞,OA∶PA=3∶1处理24 h
    ROS↓, GCLC、GCLM、Keap1、HOMX1、Nrf2↑ [44]
    人参皂苷Rg1 HFD诱导C57BL/6小鼠16周 GPR78、CHOP、Caspase 12↓ [45]
    银杏内酯B HFD饮食诱导C57/BL6 ApoE-/-小鼠
    11周,OA(200 μmol/L)与PA(100 μmol/L)
    诱导HepG2
    MDA、ROS↓, SOD、GSH-Px、Nrf2、HO-1、GPX4、Nrf2↑ [46]
    积雪草苷 HFD诱导SD大鼠8周 MDA、CYP2E1↓, SOD↑ [47]
    苷类 栀子苷 OA, PA诱导的细胞模型, 泰洛沙泊诱导
    WT和Nrf2-/- C57BL/6小鼠
    ROS↓, SOD、MPO、Nrf2、HO-1↑ [48]
    芍药苷 HFD诱导SD大鼠10周 MDA、ROS、CYP2E1↓, SOD↑ [49]
    龙胆苦苷 HFD诱导SD大鼠8周 MDA↓, SOD、GSH-Px、pAMPK、Nrf2↑ [50]
    注:↓表示降低;↑表示升高;PA,棕榈酸;OA,油酸。
    下载: 导出CSV
  • [1] STEFAN N, HÄRING HU, CUSI K. Non-alcoholic fatty liver disease: Causes, diagnosis, cardiometabolic consequences, and treatment strategies[J]. Lancet Diabetes Endocrinol, 2019, 7(4): 313-324. DOI: 10.1016/S2213-8587(18)30154-2.
    [2] ESTES C, ANSTEE QM, ARIAS-LOSTE MT, et al. Modeling NAFLD disease burden in China, France, Germany, Italy, Japan, Spain, United Kingdom, and United States for the period 2016-2030[J]. J Hepatol, 2018, 69(4): 896-904. DOI: 10.1016/j.jhep.2018.05.036.
    [3] TU W, WANG H, LI S, et al. The anti-inflammatory and anti-oxidant mechanisms of the Keap1/Nrf2/ARE signaling pathway in chronic diseases[J]. Aging Dis, 2019, 10(3): 637-651. DOI: 10.14336/AD.2018.0513.
    [4] PAN X, WEN SW, KAMINGA AC, et al. Gut metabolites and inflammation factors in non-alcoholic fatty liver disease: A systematic review and meta-analysis[J]. Sci Rep, 2020, 10(1): 8848. DOI: 10.1038/s41598-020-65051-8.
    [5] QIAN SJ, GU JY, GAO JH, et al. Advances in therapeutic drugs for nonalcoholic steatohepatitis[J]. J Clin Hepatol, 2020, 36(12): 2826-2830. DOI: 10.3969/j.issn.1001-5256.2020.12.039.

    钱帅杰, 谷劲岳, 高锦航, 等. 非酒精性脂肪性肝炎治疗药物的进展[J]. 临床肝胆病杂志, 2020, 36(12): 2826-2830. DOI: 10.3969/j.issn.1001-5256.2020.12.039.
    [6] QIAN K, LIU YY, ZHANG Y, et al. Research progress on molecular mechanism of traditional Chinese medicine against non-alcoholic fatty liver disease[J]. Chin Tradit Herbal Drugs, 2020, 51(19): 5083-5092. DOI: 10.7501/j.issn.0253-2670.2020.19.029.

    钱坤, 刘亚云, 张艳, 等. 中药抗非酒精性脂肪肝病分子机制的研究进展[J]. 中草药, 2020, 51(19): 5083-5092. DOI: 10.7501/j.issn.0253-2670.2020.19.029.
    [7] SIMÖES I, FONTES A, PINTON P, et al. Mitochondria in non-alcoholic fatty liver disease[J]. Int J Biochem Cell Biol, 2018, 95: 93-99. DOI: 10.1016/j.biocel.2017.12.019.
    [8] ALJOMAH G, BAKER SS, LIU W, et al. Induction of CYP2E1 in non-alcoholic fatty liver diseases[J]. Exp Mol Pathol, 2015, 99(3): 677-681. DOI: 10.1016/j.yexmp.2015.11.008.
    [9] MASARONE M, ROSATO V, DALLIO M, et al. Corrigendum to "role of oxidative stress in pathophysiology of nonalcoholic fatty liver disease"[J]. Oxid Med Cell Longev, 2021, 2021: 9757921. DOI: 10.1155/2021/9757921.
    [10] JIANG JX, TÖRÖK NJ. NADPH oxidases in chronic liver diseases[J]. Adv Hepatol, 2014, 2014: 742931. DOI: 10.1155/2014/742931.
    [11] DATZ C, MVLLER E, AIGNER E. Iron overload and non-alcoholic fatty liver disease[J]. Minerva Endocrinol, 2017, 42(2): 173-183. DOI: 10.23736/S0391-1977.16.02565-7.
    [12] GRATTAGLIANO I, de BARI O, BERNARDO TC, et al. Role of mitochondria in nonalcoholic fatty liver disease-from origin to propagation[J]. Clin Biochem, 2012, 45(9): 610-618. DOI: 10.1016/j.clinbiochem.2012.03.024.
    [13] SIMÖES I, FONTES A, PINTON P, et al. Mitochondria in non-alcoholic fatty liver disease[J]. Int J Biochem Cell Biol, 2018, 95: 93-99. DOI: 10.1016/j.biocel.2017.12.019.
    [14] KOEK GH, LIEDORP PR, BAST A. The role of oxidative stress in non-alcoholic steatohepatitis[J]. Clin Chim Acta, 2011, 412(15-16): 1297-1305. DOI: 10.1016/j.cca.2011.04.013.
    [15] GAO D, WEI C, CHEN L, et al. Oxidative DNA damage and DNA repair enzyme expression are inversely related in murine models of fatty liver disease[J]. Am J Physiol Gastrointest Liver Physiol, 2004, 287(5): G1070-G1077. DOI: 10.1152/ajpgi.00228.2004.
    [16] SPAHIS S, DELVIN E, BORYS JM, et al. Oxidative stress as a critical factor in nonalcoholic fatty liver disease pathogenesis[J]. Antioxid Redox Signal, 2017, 26(10): 519-541. DOI: 10.1089/ars.2016.6776.
    [17] CORREIA MA, KWON D. Why hepatic CYP2E1-elevation by itself is insufficient for inciting NAFLD/NASH: Inferences from two genetic knockout mouse models[J]. Biology (Basel), 2020, 9(12). DOI: 10.3390/biology9120419.
    [18] AUBERT J, BEGRICHE K, KNOCKAERT L, et al. Increased expression of cytochrome P450 2E1 in nonalcoholic fatty liver disease: Mechanisms and pathophysiological role[J]. Clin Res Hepatol Gastroenterol, 2011, 35(10): 630-637. DOI: 10.1016/j.clinre.2011.04.015.
    [19] DIESINGER T, LAUTWEIN A, BUKO V, et al. ω-Imidazolyl-alkyl derivatives as new preclinical drug candidates for treating non-alcoholic steatohepatitis[J]. Physiol Rep, 2021, 9(6): e14795. DOI: 10.14814/phy2.14795.
    [20] LEBEAUPIN C, VALLÉE D, HAZARI Y, et al. Endoplasmic reticulum stress signalling and the pathogenesis of non-alcoholic fatty liver disease[J]. J Hepatol, 2018, 69(4): 927-947. DOI: 10.1016/j.jhep.2018.06.008.
    [21] MASARONE M, ROSATO V, DALLIO M, et al. Role of oxidative stress in pathophysiology of nonalcoholic fatty liver disease[J]. Oxid Med Cell Longev, 2018, 2018: 1-14. DOI: 10.1155/2018/9547613
    [22] WEI Y, WANG D, GENTILE C L, et al. Reduced endoplasmic reticulum luminal calcium links saturated fatty acid-mediated endoplasmic reticulum stress and cell death in liver cells[J]. Mol Cell Biochem, 2009, 331(1-2): 31-40. DOI: 10.1007/s11010-009-0142-1.
    [23] XU H, TIAN Y, TANG D, et al. An Endoplasmic reticulum stress-microRNA-26a feedback circuit in NAFLD[J]. Hepatology, 2021, 73(4): 1327-1345. DOI: 10.1002/hep.31428.
    [24] LOFFREDO L, DEL BEN M, PERRI L, et al. Effects of dark chocolate on NOX-2-generated oxidative stress in patients with non-alcoholic steatohepatitis[J]. Aliment Pharmacol Ther, 2016, 44(3): 279-286. DOI: 10.1111/apt.13687.
    [25] NELSON JE, KLINTWORTH H, KOWDLEY KV. Iron metabolism in nonalcoholic fatty liver disease[J]. Curr Gastroenterol Rep, 2012, 14(1): 8-16. DOI: 10.1007/s11894-011-0234-4.
    [26] EDER SK, FELDMAN A, STREBINGER G, et al. Mesenchymal iron deposition is associated with adverse long-term outcome in non-alcoholic fatty liver disease[J]. Liver Int, 2020, 40(8): 1872-1882. DOI: 10.1111/liv.14503.
    [27] ZHONG X, LIU H. Baicalin attenuates diet induced nonalcoholic steatohepatitis by inhibiting inflammation and oxidative stress via suppressing JNK signaling pathways[J]. Biomed Pharmacother, 2018, 98: 111-117. DOI: 10.1016/j.biopha.2017.12.026.
    [28] OU Q, WENG Y, WANG S, et al. Silybin alleviates hepatic steatosis and fibrosis in NASH mice by inhibiting oxidative stress and involvement with the Nf-κB pathway[J]. Dig Dis Sci, 2018, 63(12): 3398-3408. DOI: 10.1007/s10620-018-5268-0.
    [29] LIU JJ, DAI L, DONG L, et al. Effects of polydatin on nonalcoholic fatty liver and related molecular mechanisms[J]. Chin J Immunol, 2019, 35(10): 1188-1192. DOI: 10.3969/j.issn.1000-484X.2019.10.008.

    刘皎皎, 戴玲, 董璐, 等. 虎杖苷对非酒精性脂肪肝的影响及相关分子机制探究[J]. 中国免疫学杂志, 2019, 35(10): 1188-1192. DOI: 10.3969/j.issn.1000-484X.2019.10.008.
    [30] PORRAS D, NISTAL E, MARTÍNEZ-FLÓREZ S, et al. Protective effect of quercetin on high-fat diet-induced non-alcoholic fatty liver disease in mice is mediated by modulating intestinal microbiota imbalance and related gut-liver axis activation[J]. Free Radic Biol Med, 2017, 102: 188-202. DOI: 10.1016/j.freeradbiomed.2016.11.037.
    [31] YAUN QF, TANG SM, CHEN SY, et al. Therapeutic effect of astragalus polysaccharides on nonalcoholic fatty liver disease in rats[J]. Acad J Sec Mil Med Univ, 2018, 39(5): 573-578. DOI: 10.16781/j.0258-879x.2018.05.0573.

    袁前发, 唐思梦, 陈思羽, 等. 黄芪多糖对非酒精性脂肪肝病大鼠的治疗作用[J]. 第二军医大学学报, 2018, 39(5): 573-578. DOI: 10.16781/j.0258-879x.2018.05.0573.
    [32] SHU T, WANG HR, LI EC, et al. Effects of corn silk polysaccharides on liver miR-146a/NOX4/ROS pathway in rats with non-alcoholic fatty liver[J]. Heilongjiang Med Pharm, 2020, 43(4): 10-12. DOI: 10.3969/j.issn.1008-0104.2020.04.004.

    舒涛, 王浩然, 李恩丞, 等. 玉米须多糖对非酒精性脂肪肝大鼠肝脏miR-146a/NOX4/ROS通路的影响[J]. 黑龙江医药科学, 2020, 43(4): 10-12. DOI: 10.3969/j.issn.1008-0104.2020.04.004.
    [33] LI HN, ZHAO LL, ZHOU DY, et al. Ganoderma lucidum polysaccharides ameliorates hepatic steatosis and oxidative stress in db/db mice via targeting nuclear factor E2 (erythroid-derived 2)-related factor-2/heme oxygenase-1 (HO-1) pathway[J]. Med Sci Monit, 2020, 26: e921905. DOI: 10.12659/MSM.921905.
    [34] GUO YQ, WU Q, WU YT, et al. Effect of Lycium barbarum polysaccharide and aerobic exercise on rats with non-alcoholic fatty liver disease and its mechanism[J]. J Shanghai Jiaotong Univ(Med Sci), 2020, 40(1): 30-36. DOI: 10.3969/j.issn.1674-8115.2020.01.005.

    郭怡琼, 吴琼, 吴雅婷, 等. 枸杞多糖和有氧运动对大鼠非酒精性脂肪肝的干预效果及其机制研究[J]. 上海交通大学学报(医学版), 2020, 40(1): 30-36. DOI: 10.3969/j.issn.1674-8115.2020.01.005.
    [35] GHEIBI S, GOUVARCHIN GHALEH HE, MOTLAGH BM, et al. Therapeutic effects of curcumin and ursodexycholic acid on non-alcoholic fatty liver disease[J]. Biomed Pharmacother, 2019, 115: 108938. DOI: 10.1016/j.biopha.2019.108938.
    [36] FENG WW, KUANG SY, TU C, et al. Natural products berberine and curcumin exhibited better ameliorative effects on rats with non-alcohol fatty liver disease than lovastatin[J]. Biomed Pharmacother, 2018, 99: 325-333. DOI: 10.1016/j.biopha.2018.01.071.
    [37] IZDEBSKA M, PI TKOWSKA-CHMIEL I, KOROLCZUK A, et al. The beneficial effects of resveratrol on steatosis and mitochondrial oxidative stress in HepG2 cells[J]. Can J Physiol Pharmacol, 2017, 95(12): 1442-1453. DOI: 10.1139/cjpp-2016-0561.
    [38] XIA HM, WANG J, XIE XJ, et al. Green tea polyphenols attenuate hepatic steatosis, and reduce insulin resistance and inflammation in high-fat diet-induced rats[J]. Int J Mol Med, 2019, 44(4): 1523-1530. DOI: 10.3892/ijmm.2019.4285.
    [39] XU X, ZHU XP, BAI JY, et al. Berberine alleviates nonalcoholic fatty liver induced by a high-fat diet in mice by activating SIRT3[J]. FASEB J, 2019, 33(6): 7289-7300. DOI: 10.1096/fj.201802316R.
    [40] DING J, ZHANG B, WEI DM, et al. Effects of berberine hydrochloride on liver oxidative stress and nuclear Nrf2 expression in rats with nonalcoholic fatty liver disease[J]. Immunol J, 2020, 36(3): 201-207. DOI: 10.13431/j.cnki.immunol.j.20200033.

    丁静, 张斌, 魏冬梅, 等. 盐酸小檗碱对非酒精性脂肪肝大鼠肝脏氧化应激水平及Nrf2表达的影响[J]. 免疫学杂志, 2020, 36(3): 201-207. DOI: 10.13431/j.cnki.immunol.j.20200033.
    [41] CHEN B, MA Y, XUE X, et al. Tetramethylpyrazine reduces inflammation in the livers of mice fed a high fat diet[J]. Mol Med Rep, 2019, 19(4): 2561-2568. DOI: 10.3892/mmr.2019.9928.
    [42] FEI WJ, ZHANG L, DUAN LY, et al. Effect of oxymatrine on lipid accumulation in Hepg2 cells exposed to palmitic acid[J]. J Chongqing Med Univ, 2016, 41(11): 1125-1130. DOI: 10.13406/j.cnki.cyxb.001047.

    费雯婕, 张琳, 段力园, 等. 氧化苦参碱改善棕榈酸诱导的HepG2细胞脂质沉积及氧化应激的研究[J]. 重庆医科大学学报, 2016, 41(11): 1125-1130. DOI: 10.13406/j.cnki.cyxb.001047.
    [43] CUI H, LI Y, CAO M, et al. Untargeted metabolomic analysis of the effects and mechanism of nuciferine treatment on rats with nonalcoholic fatty liver disease[J]. Front Pharmacol, 2020, 11: 858. DOI: 10.3389/fphar.2020.00858.
    [44] CHENG B, GAO W, WU X, et al. Ginsenoside Rg2 ameliorates high-fat diet-induced metabolic disease through SIRT1[J]. J Agric Food Chem, 2020, 68(14): 4215-4226. DOI: 10.1021/acs.jafc.0c00833.
    [45] XU Y, YANG C, ZHANG S, et al. Ginsenoside Rg1 protects against non-alcoholic fatty liver disease by ameliorating lipid peroxidation, endoplasmic reticulum stress, and inflammasome activation[J]. Biol Pharm Bull, 2018, 41(11): 1638-1644. DOI: 10.1248/bpb.b18-00132.
    [46] LI GM, LI Y, CHEN L. Ginsenoside Rg1 in the treatment of nonalcoholic fatty liver disease[J]. Chin J Clin Pharmacol Ther, 2020, 25(1): 87-93. DOI: 10.12092/j.issn.1009-2501.2020.01.013.

    李贵明, 李燕, 陈立. 人参皂苷Rg1治疗非酒精性脂肪肝的研究进展[J]. 中国临床药理学与治疗学, 2020, 25(1): 87-93. DOI: 10.12092/j.issn.1009-2501.2020.01.013.
    [47] YANG Y, CHEN J, GAO Q, et al. Study on the attenuated effect of Ginkgolide B on ferroptosis in high fat diet induced nonalcoholic fatty liver disease[J]. Toxicology, 2020, 445: 152599. DOI: 10.1016/j.tox.2020.152599.
    [48] HAUNG Q, ZHU XQ, WU CM, et al. Effects of asiaticoside on oxidative stress in rats with non-alcoholic fatty liver[J]. Jiangsu J Tradit Chin Med, 2016, 48(3): 81-83. https://www.cnki.com.cn/Article/CJFDTOTAL-JSZY201603037.htm

    黄强, 朱小区, 吴春明, 等. 积雪草苷对非酒精性脂肪肝大鼠氧化应激的影响[J]. 江苏中医药, 2016, 48(3): 81-83. https://www.cnki.com.cn/Article/CJFDTOTAL-JSZY201603037.htm
    [49] SHEN B, FENG H, CHENG J, et al. Geniposide alleviates non-alcohol fatty liver disease via regulating Nrf2/AMPK/mTOR signalling pathways[J]. J Cell Mol Med, 2020, 24(9): 5097-5108. DOI: 10.1111/jcmm.15139.
    [50] MA Z, CHU L, LIU H, et al. Beneficial effects of paeoniflorin on non-alcoholic fatty liver disease induced by high-fat diet in rats[J]. Sci Rep, 2017, 7: 44819. DOI: 10.1038/srep44819.
    [51] XU QM, GAO Y, LI ZM, et al. The effect of gentiopicroside on TLR-4/NF-κB and AMPK/Nrf2 in non-alcoholic fatty liver disease[J]. Nat Prod Res Dev, 2020, 32(10): 1652-1658. DOI: 10.16333/j.1001-6880.2020.10.004.

    许琼梅, 高雅, 李梓萌, 等. 龙胆苦苷对非酒精性脂肪肝TLR-4/NF-κB和AMPK/Nrf2通路的影响[J]. 天然产物研究与开发, 2020, 32(10): 1652-1658. DOI: 10.16333/j.1001-6880.2020.10.004.
  • 加载中
表(1)
计量
  • 文章访问数:  499
  • HTML全文浏览量:  179
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-06
  • 录用日期:  2021-06-21
  • 出版日期:  2021-12-20
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回