中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

胆汁酸G蛋白偶联受体5在非病毒性肝病中的作用

周群 张华 刘平 陈佳美

引用本文:
Citation:

胆汁酸G蛋白偶联受体5在非病毒性肝病中的作用

DOI: 10.3969/j.issn.1001-5256.2022.09.043
基金项目: 

国家自然科学基金重点项目 (82130120);

国家自然科学基金 (81973613);

上海市青年科技启明星计划项目 (19QA1408900)

利益冲突声明:所有作者均声明不存在利益冲突。
作者贡献声明:周群负责查阅文献,撰写综述;张华负责修改论文;刘平、陈佳美负责拟定写作思路,修改审校文章及最后定稿。
详细信息
    通信作者:

    刘平,liuliver@vip.sina.com

    陈佳美,cjm0102@126.com

Role of Takeda G protein-coupled receptor-5 in non-viral liver diseases

Research funding: 

Key Program of National Natural Science Foundation of China (82130120);

National Natural Science Foundation of China (81973613);

Shanghai Rising-Star Program (19QA1408900)

More Information
  • 摘要: 非病毒性肝病主要包括非酒精性脂肪性肝病、酒精性肝病、自身免疫性肝病和胆汁淤积性肝病等,近年来患病率呈上升趋势。胆汁酸G蛋白偶联受体5(TGR5)隶属于G蛋白偶联受体超家族,由初级和次级胆汁酸激活,在胆汁酸稳态、基础代谢、能量平衡和减轻炎症反应等方面均发挥重要的调控作用,是多种疾病的潜在治疗靶点。越来越多的证据表明,TGR5可改善肝脏胆汁酸及糖脂代谢,减轻肝脏炎症反应,减少肝脂肪变性,从而发挥保护肝脏的作用。本文就目前TGR5在非病毒性肝病领域中的基础研究进展作一综述,期冀对TGR5的研究发展有所补益。

     

  • [1] MARUYAMA T, MIYAMOTO Y, NAKAMURA T, et al. Identification of membrane-type receptor for bile acids (M-BAR)[J]. Biochem Biophys Res Commun, 2002, 298(5): 714-719. DOI: 10.1016/s0006-291x(02)02550-0.
    [2] DUBOC H, TACHÉ Y, HOFMANN AF. The bile acid TGR5 membrane receptor: from basic research to clinical application[J]. Dig Liver Dis, 2014, 46(4): 302-312. DOI: 10.1016/j.dld.2013.10.021.
    [3] SCHAAP FG, TRAUNER M, JANSEN PL. Bile acid receptors as targets for drug development[J]. Nat Rev Gastroenterol Hepatol, 2014, 11(1): 55-67. DOI: 10.1038/nrgastro.2013.151.
    [4] CHIANG JYL, FERRELL JM. Bile acid receptors FXR and TGR5 signaling in fatty liver diseases and therapy[J]. Am J Physiol Gastrointest Liver Physiol, 2020, 318(3): G554-G573. DOI: 10.1152/ajpgi.00223.2019.
    [5] DONEPUDI AC, BOEHME S, LI F, et al. G-protein-coupled bile acid receptor plays a key role in bile acid metabolism and fasting-induced hepatic steatosis in mice[J]. Hepatology, 2017, 65(3): 813-827. DOI: 10.1002/hep.28707.
    [6] PATHAK P, LIU H, BOEHME S, et al. Farnesoid X receptor induces Takeda G-protein receptor 5 cross-talk to regulate bile acid synthesis and hepatic metabolism[J]. J Biol Chem, 2017, 292(26): 11055-11069. DOI: 10.1074/jbc.M117.784322.
    [7] KUMAR DP, ASGHARPOUR A, MIRSHAHI F, et al. Activation of transmembrane bile acid receptor TGR5 modulates pancreatic islet α cells to promote glucose homeostasis[J]. J Biol Chem, 2016, 291(13): 6626-6640. DOI: 10.1074/jbc.M115.699504.
    [8] SASAKI T, WATANABE Y, KUBOYAMA A, et al. Muscle-specific TGR5 overexpression improves glucose clearance in glucose-intolerant mice[J]. J Biol Chem, 2021, 296: 100131. DOI: 10.1074/jbc.RA120.016203.
    [9] POLS TW, NOMURA M, HARACH T, et al. TGR5 activation inhibits atherosclerosis by reducing macrophage inflammation and lipid loading[J]. Cell Metab, 2011, 14(6): 747-757. DOI: 10.1016/j.cmet.2011.11.006.
    [10] LI S, QIU M, KONG Y, et al. Bile acid G protein-coupled membrane receptor TGR5 modulates aquaporin 2-mediated water homeostasis[J]. J Am Soc Nephrol, 2018, 29(11): 2658-2670. DOI: 10.1681/ASN.2018030271.
    [11] VELAZQUEZ-VILLEGAS LA, PERINO A, LEMOS V, et al. TGR5 signalling promotes mitochondrial fission and beige remodelling of white adipose tissue[J]. Nat Commun, 2018, 9(1): 245. DOI: 10.1038/s41467-017-02068-0.
    [12] LIANG H, MATEI N, MCBRIDE DW, et al. TGR5 activation attenuates neuroinflammation via Pellino3 inhibition of caspase-8/NLRP3 after middle cerebral artery occlusion in rats[J]. J Neuroinflammation, 2021, 18(1): 40. DOI: 10.1186/s12974-021-02087-1.
    [13] HU X, YAN J, HUANG L, et al. INT-777 attenuates NLRP3-ASC inflammasome-mediated neuroinflammation via TGR5/cAMP/PKA signaling pathway after subarachnoid hemorrhage in rats[J]. Brain Behav Immun, 2021, 91: 587-600. DOI: 10.1016/j.bbi.2020.09.016.
    [14] JIN P, DENG S, TIAN M, et al. INT-777 prevents cognitive impairment by activating Takeda G protein-coupled receptor 5 (TGR5) and attenuating neuroinflammation via cAMP/ PKA/ CREB signaling axis in a rat model of sepsis[J]. Exp Neurol, 2021, 335: 113504. DOI: 10.1016/j.expneurol.2020.113504.
    [15] DENG L, CHEN X, ZHONG Y, et al. Activation of TGR5 partially alleviates high glucose-induced cardiomyocyte injury by inhibition of inflammatory responses and oxidative stress[J]. Oxid Med Cell Longev, 2019, 2019: 6372786. DOI: 10.1155/2019/6372786.
    [16] WANG J, ZHANG J, LIN X, et al. DCA-TGR5 signaling activation alleviates inflammatory response and improves cardiac function in myocardial infarction[J]. J Mol Cell Cardiol, 2021, 151: 3-14. DOI: 10.1016/j.yjmcc.2020.10.014.
    [17] LI J, CHENG R, WAN H. Overexpression of TGR5 alleviates myocardial ischemia/reperfusion injury via AKT/GSK-3β mediated inflammation and mitochondrial pathway[J]. Biosci Rep, 2020, 40(1): BSR20193482. DOI: 10.1042/BSR20193482.
    [18] ZHUANG L, DING W, ZHANG Q, et al. TGR5 attenuated liver ischemia-reperfusion injury by activating the Keap1-Nrf2 signaling pathway in mice[J]. Inflammation, 2021, 44(3): 859-872. DOI: 10.1007/s10753-020-01382-y.
    [19] ZHOU H, ZHOU S, SHI Y, et al. TGR5/Cathepsin E signaling regulates macrophage innate immune activation in liver ischemia and reperfusion injury[J]. Am J Transplant, 2021, 21(4): 1453-1464. DOI: 10.1111/ajt.16327.
    [20] LI ZY, ZHOU JJ, LUO CL, et al. Activation of TGR5 alleviates inflammation in rheumatoid arthritis peripheral blood mononuclear cells and in mice with collagen Ⅱ-induced arthritis[J]. Mol Med Rep, 2019, 20(5): 4540-4550. DOI: 10.3892/mmr.2019.10711.
    [21] HU J, WANG C, HUANG X, et al. Gut microbiota-mediated secondary bile acids regulate dendritic cells to attenuate autoimmune uveitis through TGR5 signaling[J]. Cell Rep, 2021, 36(12): 109726. DOI: 10.1016/j.celrep.2021.109726.
    [22] MERLEN G, BIDAULT-JOURDAINNE V, KAHALE N, et al. Hepatoprotective impact of the bile acid receptor TGR5[J]. Liver Int, 2020, 40(5): 1005-1015. DOI: 10.1111/liv.14427.
    [23] MERLEN G, KAHALE N, URSIC-BEDOYA J, et al. TGR5-dependent hepatoprotection through the regulation of biliary epithelium barrier function[J]. Gut, 2020, 69(1): 146-157. DOI: 10.1136/gutjnl-2018-316975.
    [24] ESLAM M, SANYAL AJ, GEORGE J, et al. MAFLD: A consensus-driven proposed nomenclature for metabolic associated fatty liver disease[J]. Gastroenterology, 2020, 158(7): 1999-2014. e1. DOI: 10.1053/j.gastro.2019.11.312.
    [25] SHI Y, SU W, ZHANG L, et al. TGR5 regulates macrophage inflammation in nonalcoholic steatohepatitis by modulating NLRP3 inflammasome activation[J]. Front Immunol, 2020, 11: 609060. DOI: 10.3389/fimmu.2020.609060.
    [26] DING L, SOUSA KM, JIN L, et al. Vertical sleeve gastrectomy activates GPBAR-1/TGR5 to sustain weight loss, improve fatty liver, and remit insulin resistance in mice[J]. Hepatology, 2016, 64(3): 760-773. DOI: 10.1002/hep.28689.
    [27] FINN PD, RODRIGUEZ D, KOHLER J, et al. Intestinal TGR5 agonism improves hepatic steatosis and insulin sensitivity in Western diet-fed mice[J]. Am J Physiol Gastrointest Liver Physiol, 2019, 316(3): G412-G424. DOI: 10.1152/ajpgi.00300.2018.
    [28] ARAB JP, KARPEN SJ, DAWSON PA, et al. Bile acids and nonalcoholic fatty liver disease: Molecular insights and therapeutic perspectives[J]. Hepatology, 2017, 65(1): 350-362. DOI: 10.1002/hep.28709.
    [29] SINGAL AK, BATALLER R, AHN J, et al. ACG clinical guideline: Alcoholic liver disease[J]. Am J Gastroenterol, 2018, 113(2): 175-194. DOI: 10.1038/ajg.2017.469.
    [30] SPATZ M, CIOCAN D, MERLEN G, et al. Bile acid-receptor TGR5 deficiency worsens liver injury in alcohol-fed mice by inducing intestinal microbiota dysbiosis[J]. JHEP Rep, 2021, 3(2): 100230. DOI: 10.1016/j.jhepr.2021.100230.
    [31] FAN M, WANG Y, JIN L, et al. Bile acid-mediated activation of brown fat protects from alcohol-induced steatosis and liver injury in mice[J]. Cell Mol Gastroenterol Hepatol, 2022, 13(3): 809-826. DOI: 10.1016/j.jcmgh.2021.12.001.
    [32] IRACHETA-VELLVE A, CALENDA CD, PETRASEK J, et al. FXR and TGR5 agonists ameliorate liver injury, steatosis, and inflammation after binge or prolonged alcohol feeding in mice[J]. Hepatol Commun, 2018, 2(11): 1379-1391. DOI: 10.1002/hep4.1256.
    [33] DYSON JK, BEUERS U, JONES D, et al. Primary sclerosing cholangitis[J]. Lancet, 2018, 391(10139): 2547-2559. DOI: 10.1016/S0140-6736(18)30300-3.
    [34] VESTERHUS M, KARLSEN TH. Emerging therapies in primary sclerosing cholangitis: pathophysiological basis and clinical opportunities[J]. J Gastroenterol, 2020, 55(6): 588-614. DOI: 10.1007/s00535-020-01681-z.
    [35] KEITEL V, REICH M, HÄUSSINGER D. TGR5: pathogenetic role and/or therapeutic target in fibrosing cholangitis?[J]. Clin Rev Allergy Immunol, 2015, 48(2-3): 218-225. DOI: 10.1007/s12016-014-8443-x.
    [36] REICH M, SPOMER L, KLINDT C, et al. Downregulation of TGR5 (GPBAR1) in biliary epithelial cells contributes to the pathogenesis of sclerosing cholangitis[J]. J Hepatol, 2021, 75(3): 634-646. DOI: 10.1016/j.jhep.2021.03.029.
    [37] BAGHDASARYAN A, CLAUDEL T, GUMHOLD J, et al. Dual farnesoid X receptor/TGR5 agonist INT-767 reduces liver injury in the Mdr2-/- (Abcb4-/-) mouse cholangiopathy model by promoting biliary HCO3- output[J]. Hepatology, 2011, 54(4): 1303-1312. DOI: 10.1002/hep.24537.
    [38] YOKODA RT, RODRIGUEZ EA. Review: Pathogenesis of cholestatic liver diseases[J]. World J Hepatol, 2020, 12(8): 423-435. DOI: 10.4254/wjh.v12.i8.423.
    [39] KEITEL V, HÄUSSINGER D. Role of TGR5 (GPBAR1) in liver disease[J]. Semin Liver Dis, 2018, 38(4): 333-339. DOI: 10.1055/s-0038-1669940.
    [40] BIDAULT-JOURDAINNE V, MERLEN G, GLÉNISSON M, et al. TGR5 controls bile acid composition and gallbladder function to protect the liver from bile acid overload[J]. JHEP Rep, 2020, 3(2): 100214. DOI: 10.1016/j.jhepr.2020.100214.
    [41] KLINDT C, REICH M, HELLWIG B, et al. The G protein-coupled bile acid receptor TGR5 (Gpbar1) modulates endothelin-1 signaling in liver[J]. Cells, 2019, 8(11): 1467. DOI: 10.3390/cells8111467.
    [42] YANG H, LUO F, WEI Y, et al. TGR5 protects against cholestatic liver disease via suppressing the NF-κB pathway and activating the Nrf2/HO-1 pathway[J]. Ann Transl Med, 2021, 9(14): 1158. DOI: 10.21037/atm-21-2631.
    [43] RAO J, YANG C, YANG S, et al. Deficiency of TGR5 exacerbates immune-mediated cholestatic hepatic injury by stabilizing the β-catenin destruction complex[J]. Int Immunol, 2020, 32(5): 321-334. DOI: 10.1093/intimm/dxaa002.
    [44] GUTIÉRREZ-REBOLLEDO GA, SIORDIA-REYES AG, MECKES-FISCHER M, et al. Hepatoprotective properties of oleanolic and ursolic acids in antitubercular drug-induced liver damage[J]. Asian Pac J Trop Med, 2016, 9(7): 644-651. DOI: 10.1016/j.apjtm.2016.05.015.
    [45] MACZEWSKY J, KAISER J, GRESCH A, et al. TGR5 activation promotes stimulus-secretion coupling of pancreatic β-cells via a PKA-dependent pathway[J]. Diabetes, 2019, 68(2): 324-336. DOI: 10.2337/db18-0315.
    [46] RAJAGOPAL S, KUMAR DP, MAHAVADI S, et al. Activation of G protein-coupled bile acid receptor, TGR5, induces smooth muscle relaxation via both Epac-and PKA-mediated inhibition of RhoA/Rho kinase pathway[J]. Am J Physiol Gastrointest Liver Physiol, 2013, 304(5): G527-G535. DOI: 10.1152/ajpgi.00388.2012.
    [47] XUE C, LI Y, LV H, et al. Oleanolic acid targets the gut-liver axis to alleviate metabolic disorders and hepatic steatosis[J]. J Agric Food Chem, 2021, 69(28): 7884-7897. DOI: 10.1021/acs.jafc.1c02257.
    [48] LIU J, WANG X, LIU R, et al. Oleanolic acid co-administration alleviates ethanol-induced hepatic injury via Nrf-2 and ethanol-metabolizing modulating in rats[J]. Chem Biol Interact, 2014, 221: 88-98. DOI: 10.1016/j.cbi.2014.07.017.
    [49] LIU J, LU YF, WU Q, et al. Oleanolic acid reprograms the liver to protect against hepatotoxicants, but is hepatotoxic at high doses[J]. Liver Int, 2019, 39(3): 427-439. DOI: 10.1111/liv.13940.
    [50] MLALA S, OYEDEJI AO, GONDWE M, et al. Ursolic acid and its derivatives as bioactive agents[J]. Molecules, 2019, 24(15): 2751. DOI: 10.3390/molecules24152751.
    [51] SUNDARESAN A, RADHIGA T, PUGALENDI KV. Effect of ursolic acid and Rosiglitazone combination on hepatic lipid accumulation in high fat diet-fed C57BL/6J mice[J]. Eur J Pharmacol, 2014, 741: 297-303. DOI: 10.1016/j.ejphar.2014.07.032.
    [52] CHENG J, LIU Y, LIU Y, et al. Ursolic acid alleviates lipid accumulation by activating the AMPK signaling pathway in vivo and in vitro[J]. J Food Sci, 2020, 85(11): 3998-4008. DOI: 10.1111/1750-3841.15475.
    [53] YAN X, REN X, LIU X, et al. Dietary ursolic acid prevents alcohol-induced liver injury via gut-liver axis homeostasis modulation: The key role of microbiome manipulation[J]. J Agric Food Chem, 2021, 69(25): 7074-7083. DOI: 10.1021/acs.jafc.1c02362.
    [54] HORIBA T, KATSUKAWA M, MITA M, et al. Dietary obacunone supplementation stimulates muscle hypertrophy, and suppresses hyperglycemia and obesity through the TGR5 and PPARγ pathway[J]. Biochem Biophys Res Commun, 2015, 463(4): 846-852. DOI: 10.1016/j.bbrc.2015.06.022.
    [55] DING L, YANG Q, ZHANG E, et al. Notoginsenoside Ft1 acts as a TGR5 agonist but FXR antagonist to alleviate high fat diet-induced obesity and insulin resistance in mice[J]. Acta Pharm Sin B, 2021, 11(6): 1541-1554. DOI: 10.1016/j.apsb.2021.03.038.
    [56] JIANG LS, LI W, ZHUANG TX, et al. Ginsenoside ro ameliorates high-fat diet-induced obesity and insulin resistance in mice via activation of the G protein-coupled bile acid receptor 5 pathway[J]. J Pharmacol Exp Ther, 2021, 377(3): 441-451. DOI: 10.1124/jpet.120.000435.
    [57] HE K, HU Y, MA H, et al. Rhizoma Coptidis alkaloids alleviate hyperlipidemia in B6 mice by modulating gut microbiota and bile acid pathways[J]. Biochim Biophys Acta, 2016, 1862(9): 1696-1709. DOI: 10.1016/j.bbadis.2016.06.006.
  • 加载中
计量
  • 文章访问数:  421
  • HTML全文浏览量:  113
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-31
  • 录用日期:  2022-03-05
  • 出版日期:  2022-09-20
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回