中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

去乙酰化酶Sirtuins家族与非酒精性脂肪性肝病的关系

宗也凯 刘江凯

引用本文:
Citation:

去乙酰化酶Sirtuins家族与非酒精性脂肪性肝病的关系

DOI: 10.3969/j.issn.1001-5256.2022.10.030
基金项目: 

国家自然科学基金 (U1504825);

河南省中医管理局科研专项 (2021JDZY003);

河南省中医药拔尖人才项目 (2021-15)

利益冲突声明:所有作者均声明不存在利益冲突。
作者贡献声明:宗也凯负责论文设计,收集数据,资料分析,撰写论文并最后定稿; 刘江凯参与论文指导。
详细信息
    通信作者:

    刘江凯,13592553982@126.com

Association between the sirtuin family of deacetylases and nonalcoholic fatty liver disease

Research funding: 

National Natural Science Foundation of China (U1504825);

Scientific Research Special Project of Henan Administration of TCM (2021JDZY003);

Henan TCM Top-Notch Talent Program (2021-15)

More Information
  • 摘要: 去乙酰化酶Sirtuins家族广泛存在于人体细胞当中,通过作用于线粒体、内质网和细胞核调节多种蛋白的翻译后化学修饰,对生物代谢过程产生影响,其参与非酒精性脂肪性肝病中的多种病理生理反应。本文对去乙酰化酶Sirtuins家族与非酒精性脂肪性肝病关系的研究进展进行了综述,旨在为今后治疗非酒精性脂肪性肝病提供可能的潜在途径。

     

  • 表  1  哺乳动物Sirtuins一般特征[8-10]

    Table  1.   General characteristics of Sirtuins in mammals

    分型 位置 长度 催化活性 与NAFLD相关功能
    SIRT1 细胞核 747 aa 脱乙酰基酶 染色质的形成,线粒体生物发生,脂肪酸氧化,胆固醇和胆汁酸稳态的调节
    SIRT2 细胞质 352 aa 脱乙酰基酶
    脱嘧啶酶
    细胞周期调节,促进脂肪细胞的脂肪分解,肿瘤抑制/促进
    SIRT3 线粒体 399 aa 脱乙酰基酶 线粒体活性的调节,抗氧化应激活动,肿瘤抑制
    SIRT4 线粒体 314 aa 脱乙酰基酶
    腺苷二磷酸核糖基转移酶
    脂肪酰胺酶
    葡萄糖代谢,氨基酸分解代谢,肿瘤抑制
    SIRT5 线粒体 310 aa 脱乙酰基酶
    去琥珀酸酶
    去谷氨酰胺酶
    脂肪酸代谢,氨基酸代谢,尿素循环
    SIRT6 细胞核 355 aa 脱乙酰基酶
    脱醛酶
    腺苷二磷酸核糖基转移酶
    脱嘧啶酶
    基因组稳定性/DNA修复,糖脂代谢,发炎
    SIRT7 细胞核 400 aa 脱乙酰基酶
    腺苷二磷酸核糖基转移酶
    核糖体生物发生,肿瘤促进
    注:aa,氨基酸。数据库来源:Uniprot,Genecards。
    下载: 导出CSV
  • [1] LAZARUS JV, MARK HE, ANSTEE QM, et al. Advancing the global public health agenda for NAFLD: a consensus statement[J]. Nat Rev Gastroenterol Hepatol, 2022, 19(1): 60-78. DOI: 10.1038/s41575-021-00523-4.
    [2] YOUNOSSI ZM, KOENIG AB, ABDELATIF D, et al. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes[J]. Hepatology, 2016, 64(1): 73-84. DOI: 10.1002/hep.28431.
    [3] ZHOU F, ZHOU J, WANG W, et al. Unexpected rapid increase in the burden of NAFLD in China from 2008 to 2018: A systematic review and meta-analysis[J]. Hepatology, 2019, 70(4): 1119-1133. DOI: 10.1002/hep.30702.
    [4] SHAPIRO WL, NOON SL, SCHWIMMER JB. Recent advances in the epidemiology of nonalcoholic fatty liver disease in children[J]. Pediatr Obes, 2021, 16(11): e12849. DOI: 10.1111/ijpo.12849.
    [5] WANG CE, XU WT, GONG J, et al. Research progress in treatment of nonalcoholic fatty liver disease[J]. Chin J Med Offic, 2022, 50(9): 897-899, 903. DOI: 10.16680/j.1671-3826.2022.09.06.

    王彩娥, 许文涛, 宫建, 等. 非酒精性脂肪性肝病治疗研究进展[J]. 临床军医杂志, 2022, 50(9): 897-899, 903. DOI: 10.16680/j.1671-3826.2022.09.06.
    [6] FINKEL T, DENG CX, MOSTOSLAVSKY R. Recent progress in the biology and physiology of sirtuins[J]. Nature, 2009, 460(7255): 587-591. DOI: 10.1038/nature08197.
    [7] HIRSCHEY MD, ZHAO Y. Metabolic regulation by lysine malonylation, succinylation, and glutarylation[J]. Mol Cell Proteomics, 2015, 14(9): 2308-2315. DOI: 10.1074/mcp.R114.046664.
    [8] KUPIS W, PAŁYGA J, TOMAL E, et al. The role of sirtuins in cellular homeostasis[J]. J Physiol Biochem, 2016, 72(3): 371-380. DOI: 10.1007/s13105-016-0492-6.
    [9] CARAFA V, ROTILI D, FORGIONE M, et al. Sirtuin functions and modulation: from chemistry to the clinic[J]. Clin Epigenetics, 2016, 8: 61. DOI: 10.1186/s13148-016-0224-3.
    [10] SANTOS L, ESCANDE C, DENICOLA A. Potential modulation of sirtuins by oxidative stress[J]. Oxid Med Cell Longev, 2016, 2016: 9831825. DOI: 10.1155/2016/9831825.
    [11] AVILKINA V, CHAUVEAU C, GHALI MHENNI O. Sirtuin function and metabolism: Role in pancreas, liver, and adipose tissue and their crosstalk impacting bone homeostasis[J]. Bone, 2022, 154: 116232. DOI: 10.1016/j.bone.2021.116232.
    [12] BUZZETTI E, PINZANI M, TSOCHATZIS EA. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD)[J]. Metabolism, 2016, 65(8): 1038-1048. DOI: 10.1016/j.metabol.2015.12.012.
    [13] SCORLETTI E, CARR RM. A new perspective on NAFLD: Focusing on lipid droplets[J]. J Hepatol, 2022, 76(4): 934-945. DOI: 10.1016/j.jhep.2021.11.009.
    [14] ALVES-BEZERRA M, COHEN DE. Triglyceride metabolism in the liver[J]. Compr Physiol, 2017, 8(1): 1-8. DOI: 10.1002/cphy.c170012.
    [15] PURUSHOTHAM A, SCHUG TT, XU Q, et al. Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation[J]. Cell Metab, 2009, 9(4): 327-338. DOI: 10.1016/j.cmet.2009.02.006.
    [16] GOETZMAN ES, BHARATHI SS, ZHANG Y, et al. Impaired mitochondrial medium-chain fatty acid oxidation drives periportal macrovesicular steatosis in sirtuin-5 knockout mice[J]. Sci Rep, 2020, 10(1): 18367. DOI: 10.1038/s41598-020-75615-3.
    [17] LI SW, TAKAHARA T, QUE W, et al. Hydrogen-rich water protects against liver injury in nonalcoholic steatohepatitis through HO-1 enhancement via IL-10 and Sirt 1 signaling[J]. Am J Physiol Gastrointest Liver Physiol, 2021, 320(4): G450-G463. DOI: 10.1152/ajpgi.00158.2020.
    [18] FORTE TM, RYAN RO. Apolipoprotein A5: Extracellular and intracellular roles in triglyceride metabolism[J]. Curr Drug Targets, 2015, 16(12): 1274-1280. DOI: 10.2174/1389450116666150531161138.
    [19] XING D, WANG B, LU H, et al. Sirtuin 3 restores synthesis and secretion of very low-density lipoproteins in cow hepatocytes challenged with nonesterified fatty acids in vitro[J]. Vet Sci, 2021, 8(7): 121. DOI: 10.3390/vetsci8070121.
    [20] ZHU C, HUANG M, KIM HG, et al. SIRT6 controls hepatic lipogenesis by suppressing LXR, ChREBP, and SREBP1[J]. Biochim Biophys Acta Mol Basis Dis, 2021, 1867(12): 166249. DOI: 10.1016/j.bbadis.2021.166249.
    [21] SATHYANARAYAN A, MASHEK MT, MASHEK DG. ATGL promotes autophagy/lipophagy via SIRT1 to control hepatic lipid droplet catabolism[J]. Cell Rep, 2017, 19(1): 1-9. DOI: 10.1016/j.celrep.2017.03.026.
    [22] DONG Z, XIE X, SUN Y, et al. Paeonol prevents lipid metabolism dysfunction in palmitic acid-induced HepG2 injury through promoting SIRT1-FoxO1-ATG14-dependent autophagy[J]. Eur J Pharmacol, 2020, 880: 173145. DOI: 10.1016/j.ejphar.2020.173145.
    [23] ZHANG T, LIU J, SHEN S, et al. SIRT3 promotes lipophagy and chaperon-mediated autophagy to protect hepatocytes against lipotoxicity[J]. Cell Death Differ, 2020, 27(1): 329-344. DOI: 10.1038/s41418-019-0356-z.
    [24] PETERSEN MC, SHULMAN GI. Mechanisms of insulin action and insulin resistance[J]. Physiol Rev, 2018, 98(4): 2133-2223. DOI: 10.1152/physrev.00063.2017.
    [25] YARIBEYGI H, FARROKHI FR, BUTLER AE, et al. Insulin resistance: Review of the underlying molecular mechanisms[J]. J Cell Physiol, 2019, 234(6): 8152-8161. DOI: 10.1002/jcp.27603.
    [26] WANG A, LI T, AN P, et al. Exendin-4 upregulates adiponectin level in adipocytes via Sirt1/Foxo-1 signaling pathway[J]. PLoS One, 2017, 12(1): e0169469. DOI: 10.1371/journal.pone.0169469.
    [27] JUNG TW, LEE KT, LEE MW, et al. SIRT1 attenuates palmitate-induced endoplasmic reticulum stress and insulin resistance in HepG2 cells via induction of oxygen-regulated protein 150[J]. Biochem Biophys Res Commun, 2012, 422(2): 229-232. DOI: 10.1016/j.bbrc.2012.04.129.
    [28] CAO Y, JIANG X, MA H, et al. SIRT1 and insulin resistance[J]. J Diabetes Complications, 2016, 30(1): 178-183. DOI: 10.1016/j.jdiacomp.2015.08.022.
    [29] WU SY, LIANG J, YANG BC, et al. SIRT1 activation promotes β-Cell regeneration by activating endocrine progenitor cells via AMPK signaling-mediated fatty acid oxidation[J]. Stem Cells, 2019, 37(11): 1416-1428. DOI: 10.1002/stem.3073.
    [30] ZHANG HH, MA XJ, WU LN, et al. Sirtuin-3 (SIRT3) protects pancreatic β-cells from endoplasmic reticulum (ER) stress-induced apoptosis and dysfunction[J]. Mol Cell Biochem, 2016, 420(1-2): 95-106. DOI: 10.1007/s11010-016-2771-5.
    [31] LETO D, SALTIEL AR. Regulation of glucose transport by insulin: traffic control of GLUT4[J]. Nat Rev Mol Cell Biol, 2012, 13(6): 383-396. DOI: 10.1038/nrm3351.
    [32] JEON JY, CHOI SE, HA ES, et al. GLP-1 improves palmitate-induced insulin resistance in human skeletal muscle via SIRT1 activity[J]. Int J Mol Med, 2019, 44(3): 1161-1171. DOI: 10.3892/ijmm.2019.4272.
    [33] MUSSO G, GAMBINO R, CASSADER M. Cholesterol metabolism and the pathogenesis of non-alcoholic steatohepatitis[J]. Prog Lipid Res, 2013, 52(1): 175-191. DOI: 10.1016/j.plipres.2012.11.002.
    [34] BRESQUE M, CAL K, PÉREZ-TORRADO V, et al. SIRT6 stabilization and cytoplasmic localization in macrophages regulates acute and chronic inflammation in mice[J]. J Biol Chem, 2022, 298(3): 101711. DOI: 10.1016/j.jbc.2022.101711.
    [35] KA SO, BANG IH, BAE EJ, et al. Hepatocyte-specific sirtuin 6 deletion predisposes to nonalcoholic steatohepatitis by up-regulation of Bach1, an Nrf2 repressor[J]. FASEB J, 2017, 31(9): 3999-4010. DOI: 10.1096/fj.201700098RR.
    [36] YANG XD, CHEN Z, YE L, et al. Esculin protects against methionine choline-deficient diet-induced non-alcoholic steatohepatitis by regulating the Sirt1/NF-κB p65 pathway[J]. Pharm Biol, 2021, 59(1): 922-932. DOI: 10.1080/13880209.2021.1945112.
    [37] XIAO C, WANG RH, LAHUSEN TJ, et al. Progression of chronic liver inflammation and fibrosis driven by activation of c-JUN signaling in Sirt6 mutant mice[J]. J Biol Chem, 2012, 287(50): 41903-41913. DOI: 10.1074/jbc.M112.415182.
    [38] VACHHARAJANI VT, LIU T, WANG X, et al. Sirtuins link inflammation and metabolism[J]. J Immunol Res, 2016, 2016: 8167273. DOI: 10.1155/2016/8167273.
    [39] TSUCHIDA T, FRIEDMAN SL. Mechanisms of hepatic stellate cell activation[J]. Nat Rev Gastroenterol Hepatol, 2017, 14(7): 397-411. DOI: 10.1038/nrgastro.2017.38.
    [40] LI M, HONG W, HAO C, et al. SIRT1 antagonizes liver fibrosis by blocking hepatic stellate cell activation in mice[J]. FASEB J, 2018, 32(1): 500-511. DOI: 10.1096/fj.201700612R.
    [41] PAROLA M, PINZANI M. Liver fibrosis: Pathophysiology, pathogenetic targets and clinical issues[J]. Mol Aspects Med, 2019, 65: 37-55. DOI: 10.1016/j.mam.2018.09.002.
    [42] KUNDU A, DEY P, PARK JH, et al. EX-527 prevents the progression of high-fat diet-induced hepatic steatosis and fibrosis by upregulating SIRT4 in Zucker rats[J]. Cells, 2020, 9(5): 1101. DOI: 10.3390/cells9051101.
    [43] ARTEAGA M, SHANG N, DING X, et al. Inhibition of SIRT2 suppresses hepatic fibrosis[J]. Am J Physiol Gastrointest Liver Physiol, 2016, 310(11): G1155-G1168. DOI: 10.1152/ajpgi.00271.2015.
    [44] ZHONG X, HUANG M, KIM HG, et al. SIRT6 protects against liver fibrosis by deacetylation and suppression of SMAD3 in hepatic stellate cells[J]. Cell Mol Gastroenterol Hepatol, 2020, 10(2): 341-364. DOI: 10.1016/j.jcmgh.2020.04.005.
    [45] RYU D, JO YS, LO SASSO G, et al. A SIRT7-dependent acetylation switch of GABPβ1 controls mitochondrial function[J]. Cell Metab, 2014, 20(5): 856-869. DOI: 10.1016/j.cmet.2014.08.001.
    [46] MARTÉNEZ-JIMÉNEZ V, CORTEZ-ESPINOSA N, RODRÍGUEZ-VARELA E, et al. Altered levels of sirtuin genes (SIRT1, SIRT2, SIRT3 and SIRT6) and their target genes in adipose tissue from individual with obesity[J]. Diabetes Metab Syndr, 2019, 13(1): 582-589. DOI: 10.1016/j.dsx.2018.11.011.
    [47] KIM HS, XIAO C, WANG RH, et al. Hepatic-specific disruption of SIRT6 in mice results in fatty liver formation due to enhanced glycolysis and triglyceride synthesis[J]. Cell Metab, 2010, 12(3): 224-236. DOI: 10.1016/j.cmet.2010.06.009.
    [48] SHARMA G, PARIHAR A, PARIHAR P, et al. Downregulation of sirtuin 3 by palmitic acid increases the oxidative stress, impairment of mitochondrial function, and apoptosis in liver cells[J]. J Biochem Mol Toxicol, 2019, 33(8): e22337. DOI: 10.1002/jbt.22337.
    [49] LI M, HONG W, HAO C, et al. Hepatic stellate cell-specific deletion of SIRT1 exacerbates liver fibrosis in mice[J]. Biochim Biophys Acta Mol Basis Dis, 2017, 1863(12): 3202-3211. DOI: 10.1016/j.bbadis.2017.09.008.
    [50] ZHANG J, LI Y, LIU Q, et al. Sirt6 alleviated liver fibrosis by deacetylating conserved lysine 54 on smad2 in hepatic stellate cells[J]. Hepatology, 2021, 73(3): 1140-1157. DOI: 10.1002/hep.31418.
    [51] CLAVERIA-CABELLO A, COLYN L, ARECHEDERRA M, et al. Epigenetics in liver fibrosis: Could HDACs be a therapeutic target?[J]. Cells, 2020, 9(10): 2321. DOI: 10.3390/cells9102321.
    [52] NASSIR F, IBDAH JA. Sirtuins and nonalcoholic fatty liver disease[J]. World J Gastroenterol, 2016, 22(46): 10084-10092. DOI: 10.3748/wjg.v22.i46.10084.
  • 加载中
表(1)
计量
  • 文章访问数:  326
  • HTML全文浏览量:  106
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-03
  • 录用日期:  2022-04-05
  • 出版日期:  2022-10-20
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回