中文English
ISSN 1001-5256
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

巨噬细胞极化在非肿瘤性肝脏疾病中的作用机制及其靶向治疗

陈玮钰 覃小宾 乐滢玉 王涵 隆晓荣 毛德文

引用本文:
Citation:

巨噬细胞极化在非肿瘤性肝脏疾病中的作用机制及其靶向治疗

DOI: 10.3969/j.issn.1001-5256.2022.11.042
基金项目: 

国家自然科学基金 81960841;

国家自然科学基金 82060848;

广西自然科学基金创新研究团队项目 2018GXNSFGA281002

利益冲突声明:所有作者均声明不存在利益冲突。
作者贡献声明:毛德文、陈玮钰负责研究选题并拟定写作思路;覃小宾、乐滢玉负责设计论文框架;王涵、隆晓荣负责收集、整理文献材料;毛德文、陈玮钰负责文章撰写和指导修改。
详细信息
    通信作者:

    毛德文, mdwboshi2005@163.com

Mechanism of action of macrophage polarization in non-neoplastic liver diseases and related targeted therapies

Research funding: 

National Natural Science Foundation of China 81960841;

National Natural Science Foundation of China 82060848;

Guangxi Natural Science Foundation Innovation Research Team Project 2018GXNSFGA281002

More Information
  • 摘要: 巨噬细胞作为重要的免疫细胞,参与维持肝内微环境稳态的关键过程。近年研究发现不同肝脏疾病均可诱发巨噬细胞极化(MPP),形成功能互为拮抗的M1和M2表型,前者可促进清除病原体和抑制肿瘤进展,后者发挥抗炎和促进组织修复的作用。然而,MPP在不同肝脏疾病或疾病不同病理阶段中的作用机制及表型转换存在明显差异。本文着重介绍了肝内巨噬细胞的起源及其极化特性,归纳探讨MPP在病毒性肝炎、酒精性肝病、非酒精性脂肪性肝病、肝纤维化等非肿瘤性肝病中发病机制和治疗药物的研究进展,旨在挖掘MPP在调控肝脏疾病免疫应答和炎症反应方面的潜力。

     

  • [1] BAJAJ JS. Alcohol, liver disease and the gut microbiota[J]. Nat Rev Gastroenterol Hepatol, 2019, 16(4): 235-246. DOI: 10.1038/s41575-018-0099-1.
    [2] ASRANI SK, DEVARBHAVI H, EATON J, et al. Burden of liver diseases in the world[J]. J Hepatol, 2019, 70(1): 151-171. DOI: 10.1016/j.jhep.2018.09.014.
    [3] WANG L, LU Q, GAO W, et al. Recent advancement on development of drug-induced macrophage polarization in control of human diseases[J]. Life Sci, 2021, 284: 119914. DOI: 10.1016/j.lfs.2021.119914.
    [4] LUO Y, GUO J, JIA W, et al. TNF-like ligand 1 aberrance aggravates nonalcoholic steatohepatitis via M1 macrophage polarization[J]. Oxid Med Cell Longev, 2021, 2021: 3877617. DOI: 10.1155/2021/3877617.
    [5] BOUTILIER AJ, ELSAWA SF. Macrophage polarization states in the tumor microenvironment[J]. Int J Mol Sci, 2021, 22(13): 6995. DOI: 10.3390/ijms22136995.
    [6] CHEN W, LIU Y, CHEN J, et al. The Notch signaling pathway regulates macrophage polarization in liver diseases[J]. Int Immunopharmacol, 2021, 99: 107938. DOI: 10.1016/j.intimp.2021.107938.
    [7] MOHAPATRA S, PIOPPINI C, OZPOLAT B, et al. Non-coding RNAs regulation of macrophage polarization in cancer[J]. Mol Cancer, 2021, 20(1): 24. DOI: 10.1186/s12943-021-01313-x.
    [8] WEN Y, LAMBRECHT J, JU C, et al. Hepatic macrophages in liver homeostasis and diseases-diversity, plasticity and therapeutic opportunities[J]. Cell Mol Immunol, 2021, 18(1): 45-56. DOI: 10.1038/s41423-020-00558-8.
    [9] TACKE F. Targeting hepatic macrophages to treat liver diseases[J]. J Hepatol, 2017, 66(6): 1300-1312. DOI: 10.1016/j.jhep.2017.02.026.
    [10] GUILLOT A, TACKE F. Liver macrophages: Old dogmas and new insights[J]. Hepatol Commun, 2019, 3(6): 730-743. DOI: 10.1002/hep4.1356.
    [11] LI Z, ZHAO J, ZHANG S, et al. FOXO3-dependent apoptosis limits alcohol-induced liver inflammation by promoting infiltrating macrophage differentiation[J]. Cell Death Discov, 2018, 4: 16. DOI: 10.1038/s41420-017-0020-7.
    [12] LI J, ZHAO J, XU M, et al. Blocking GSDMD processing in innate immune cells but not in hepatocytes protects hepatic ischemia-reperfusion injury[J]. Cell Death Dis, 2020, 11(4): 244. DOI: 10.1038/s41419-020-2437-9.
    [13] HE L, JHONG JH, CHEN Q, et al. Global characterization of macrophage polarization mechanisms and identification of M2-type polarization inhibitors[J]. Cell Rep, 2021, 37(5): 109955. DOI: 10.1016/j.celrep.2021.109955.
    [14] ERBEL C, TYKA M, HELMES CM, et al. CXCL4-induced plaque macrophages can be specifically identified by co-expression of MMP7+S100A8+ in vitro and in vivo[J]. Innate Immun, 2015, 21(3): 255-265. DOI: 10.1177/1753425914526461.
    [15] SUN Y, ZUO Z, KUANG Y. An emerging target in the battle against osteoarthritis: macrophage polarization[J]. Int J Mol Sci, 2020, 21(22): 8513. DOI: 10.3390/ijms21228513.
    [16] GEIβ C, SALAS E, GUEVARA-COTO J, et al. Multistability in macrophage activation pathways and metabolic implications[J]. Cells, 2022, 11(3): 404. DOI: 10.3390/cells11030404.
    [17] CHEN W, SHEN N, HAN WN, et al. Effect of adapters of Toll-like receptor 4 on M2 polarization of macrophages induced by lactate and its mechanism[J]. J Jilin Univ: Med Edit, 2022, 48(5): 1190-1199. DOI: 10.13481/j.1671-587X.20220512.

    陈为, 沈楠, 韩宛娜, 等. Toll样受体4接头分子对乳酸诱导巨噬细胞M2极化的促进作用及其机制[J]. 吉林大学学报(医学版), 2022, 48(5): 1190-1199. DOI: 10.13481/j.1671-587X.20220512.
    [18] LIU LP, ZHANG YH, LI M, et al. Progress in the study of related signaling pathways regulating macrophage polarization and their regulatory mechanisms[J]. Chin J Immunol, 2021, 37(6): 747-753. DOI: 10.3969/j.issn.1000-484X.2021.06.020.

    刘利萍, 张焱皓, 李茂, 等. 调控巨噬细胞极化的相关信号通路及其调节机制研究进展[J]. 中国免疫学杂志, 2021, 37(6): 747-753. DOI: 10.3969/j.issn.1000-484X.2021.06.020.
    [19] Professional Committee for Prevention and Control of Hepatobiliary and Pancreatic Diseases of Chinese Preventive Medicine Association; Professional Committee for Hepatology, Chinese Research Hospital Association; Chinese Society of Hepatology, Chinese Medical Association, et al. Guideline for stratified screening and surveillance of primary liver cancer (2020 edition)[J]. J Clin Hepatol, 2021, 37(2): 286-295. DOI: 10.3969/j.issn.1001-5256.2021.02.009.

    中华预防医学会肝胆胰疾病预防与控制专业委员会, 中国研究型医院学会肝病专业委员会, 中华医学会肝病学分会, 等. 原发性肝癌的分层筛查与监测指南(2020版)[J]. 临床肝胆病杂志, 2021, 37(2): 286-295. DOI: 10.3969/j.issn.1001-5256.2021.02.009.
    [20] ALMEIDA PH, MATIELO C, CURVELO LA, et al. Update on the management and treatment of viral hepatitis[J]. World J Gastroenterol, 2021, 27(23): 3249-3261. DOI: 10.3748/wjg.v27.i23.3249.
    [21] YI H, ZHANG Y, YANG X, et al. Hepatitis B core antigen impairs the polarization while promoting the production of inflammatory cytokines of M2 macrophages via the TLR2 pathway[J]. Front Immunol, 2020, 11: 535. DOI: 10.3389/fimmu.2020.00535.
    [22] ZHAO X, SUN L, MU T, et al. An HBV-encoded miRNA activates innate immunity to restrict HBV replication[J]. J Mol Cell Biol, 2020, 12(4): 263-276. DOI: 10.1093/jmcb/mjz104.
    [23] LI J, YU M, ZONG R, et al. Deacetylation of Notch1 by SIRT1 contributes to HBsAg- and HBeAg-mediated M2 macrophage polarization[J]. Am J Physiol Gastrointest Liver Physiol, 2022, 322(4): G459-G471. DOI: 10.1152/ajpgi.00338.2021.
    [24] TAO L, LI D, MU S, et al. LncRNA MAPKAPK5_AS1 facilitates cell proliferation in hepatitis B virus -related hepatocellular carcinoma[J]. Lab Invest, 2022, 102(5): 494-504. DOI: 10.1038/s41374-022-00731-9.
    [25] PAN XY, WANG L, YOU HM, et al. Alternative activation of macrophages by prostacyclin synthase ameliorates alcohol induced liver injury[J]. Lab Invest, 2021, 101(9): 1210-1224. DOI: 10.1038/s41374-021-00531-7.
    [26] LUO P, WANG F, WONG NK, et al. Divergent roles of Kupffer cell TLR2/3 signaling in alcoholic liver disease and the protective role of EGCG[J]. Cell Mol Gastroenterol Hepatol, 2020, 9(1): 145-160. DOI: 10.1016/j.jcmgh.2019.09.002.
    [27] KIM A, SAIKIA P, NAGY LE. miRNAs involved in M1/M2 hyperpolarization are clustered and coordinately expressed in alcoholic hepatitis[J]. Front Immunol, 2019, 10: 1295. DOI: 10.3389/fimmu.2019.01295.
    [28] ZHOU Y, WU M, XU L, et al. Bmal1 regulates macrophage polarize through glycolytic pathway in alcoholic liver disease[J]. Front Pharmacol, 2021, 12: 640521. DOI: 10.3389/fphar.2021.640521.
    [29] KÖHLER N, HÖRING M, CZEPUKOJC B, et al. Kupffer cells are protective in alcoholic steatosis[J]. Biochim Biophys Acta Mol Basis Dis, 2022, 1868(6): 166398. DOI: 10.1016/j.bbadis.2022.166398.
    [30] PATEL F, PARWANI K, PATEL D, et al. Metformin and probiotics interplay in amelioration of ethanol-induced oxidative stress and inflammatory response in an in vitro and in vivo model of hepatic injury[J]. Mediators Inflamm, 2021, 2021: 6636152. DOI: 10.1155/2021/6636152.
    [31] SUN B, ZHANG R, LIANG Z, et al. Hyperoside attenuates non-alcoholic fatty liver disease through targeting Nr4A1 in macrophages[J]. Int Immunopharmacol, 2021, 94: 107438. DOI: 10.1016/j.intimp.2021.107438.
    [32] YOSHⅡ D, NAKAGAWA T, KOMOHARA Y, et al. Phenotypic changes in macrophage activation in a model of nonalcoholic fatty liver disease using microminipigs[J]. J Atheroscler Thromb, 2021, 28(8): 844-851. DOI: 10.5551/jat.57703.
    [33] WANG Q, ZHOU H, BU Q, et al. Role of XBP1 in regulating the progression of non-alcoholic steatohepatitis[J]. J Hepatol, 2022. DOI: 10.1016/j.jhep.2022.02.031.[Onlineaheadofprint]
    [34] JEON SH, JANG E, PARK G, et al. Beneficial activities of alisma orientale extract in a western diet-induced murine non-alcoholic steatohepatitis and related fibrosis model via regulation of the hepatic adiponectin and farnesoid X receptor pathways[J]. Nutrients, 2022, 14(3): 695. DOI: 10.3390/nu14030695.
    [35] CHEN FY, TU CT. The role and molecular mechanism of Notch signaling transduction pathway on liver fibrogenesis[J/CD]. Chin J Liver Dis(Electronic Edition), 2020, 12(4): 23-28. DOI: 10.3969/j.issn.1674-7380.2020.04.004.

    陈方园, 涂传涛. Notch信号转导通路在肝纤维化形成中的作用与分子机制[J/CD]. 中国肝脏病杂志(电子版), 2020, 12(4): 23-28. DOI: 10.3969/j.issn.1674-7380.2020.04.004.
    [36] SONG LJ, YIN XR, MU SS, et al. The differential and dynamic progression of hepatic inflammation and immune responses during liver fibrosis induced by schistosoma japonicum or carbon tetrachloride in mice[J]. Front Immunol, 2020, 11: 570524. DOI: 10.3389/fimmu.2020.570524.
    [37] CHONG S, CHEN G, DANG Z, et al. Echinococcus multilocularis drives the polarization of macrophages by regulating the RhoA-MAPK signaling pathway and thus affects liver fibrosis[J]. Bioengineered, 2022, 13(4): 8747-8758. DOI: 10.1080/21655979.2022.2056690.
    [38] RAO J, WANG H, NI M, et al. FSTL1 promotes liver fibrosis by reprogramming macrophage function through modulating the intracellular function of PKM2[J]. Gut, 2022. DOI: 10.1136/gutjnl-2021-325150.[Onlineaheadofprint]
    [39] LIU P, LI H, GONG J, et al. Chitooligosaccharides alleviate hepatic fibrosis by regulating the polarization of M1 and M2 macrophages[J]. Food Funct, 2022, 13(2): 753-768. DOI: 10.1039/d1fo03768d.
    [40] LI H, SUN S, LEI Q, et al. M1-polarized macrophages promote self-renewing phenotype of hepatic progenitor cells with Jagged1-Notch signalling involved: Relevance in primary sclerosing cholangitis[J]. J Immunol Res, 2018, 2018: 4807145. DOI: 10.1155/2018/4807145.
    [41] LI X, LIU R, WANG Y, et al. Cholangiocyte-derived exosomal lncRNA H19 promotes macrophage activation and hepatic inflammation under cholestatic conditions[J]. Cells, 2020, 9(1): 190. DOI: 10.3390/cells9010190.
    [42] LIU Y, LIU H, ZHU J, et al. Interleukin-34 drives macrophage polarization to the M2 phenotype in autoimmune hepatitis[J]. Pathol Res Pract, 2019, 215(8): 152493. DOI: 10.1016/j.prp.2019.152493.
    [43] WANG Y, GUO X, JIAO G, et al. Splenectomy promotes macrophage polarization in a mouse model of concanavalin A-(ConA-) induced liver fibrosis[J]. Biomed Res Int, 2019, 2019: 5756189. DOI: 10.1155/2019/5756189.
    [44] CHI G, PEI JH, LI XQ. EZH2-mediated H3K27me3 promotes autoimmune hepatitis progression by regulating macrophage polarization[J]. Int Immunopharmacol, 2022, 106: 108612. DOI: 10.1016/j.intimp.2022.108612.
    [45] LIANG J, LONG Z, ZHANG Y, et al. Chloride intercellular channel 3 suppression-mediated macrophage polarization: a potential indicator of poor prognosis of hepatitis B virus-related acute-on-chronic liver failure[J]. Immunol Cell Biol, 2022, 100(5): 323-337. DOI: 10.1111/imcb.12542.
    [46] BAI WJ, MAO DW, SHI QL, et al. Effect of Jieduqi Granule on inflammation in patients with chronic liver failure of toxic heat and blood stasis syndrome[J]. Chin J Exp Med Formul, 2022, 28(3): 109-115. DOI: 10.13422/j.cnki.syfjx.20220304.

    柏文婕, 毛德文, 石清兰, 等. 解毒化瘀颗粒对慢性肝衰竭毒热瘀结证患者炎症状态的影响[J]. 中国实验方剂学杂志, 2022, 28(3): 109-115. DOI: 10.13422/j.cnki.syfjx.20220304.
  • 加载中
计量
  • 文章访问数:  91
  • HTML全文浏览量:  30
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-31
  • 录用日期:  2022-05-14
  • 出版日期:  2022-11-20
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回