中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

竞争性内源RNA在胆管细胞癌发生发展中的作用

徐宝麟 成雨 魏勇

引用本文:
Citation:

竞争性内源RNA在胆管细胞癌发生发展中的作用

DOI: 10.3969/j.issn.1001-5256.2022.11.044
利益冲突声明:所有作者均声明不存在利益冲突。
作者贡献声明:徐宝麟负责资料收集与分析,撰写论文;魏勇、成雨负责拟定写作思路,指导撰写文章并最后定稿。
详细信息
    通信作者:

    魏勇,weiyonglancet@163.com

The role of competitive endogenous RNA in the development of cholangiocarcinoma

More Information
  • 摘要: 竞争性内源RNA是能够竞争性结合miRNA的一类转录产物,主要包括长链非编码RNA及环状RNA等,参与多种肿瘤的发生过程。胆管癌恶性程度高,预后差,治疗手段有限,发病机制复杂。竞争性内源RNA,特别是长链非编码RNA和环状RNA,能够通过影响胆管癌细胞的生物学行为、细胞代谢、炎症过程、上皮-间质转化过程影响胆管癌的发生发展。本文对长链非编码RNA与环状RNA在胆管细胞癌发生中的作用进行综述,以期进一步阐明胆管癌的发病机制。

     

  • [1] YU Y, CHEN Q, ZHANG X, et al. Long noncoding RNA ANRIL promotes the malignant progression of cholangiocarcinoma by epigenetically repressing ERRFI1 expression[J]. Cancer Sci, 2020, 111(7): 2297-2309. DOI: 10.1111/cas.14447.
    [2] DU C, LI DQ, LI N, et al. DDX5 promotes gastric cancer cell proliferation in vitro and in vivo through mTOR signaling pathway[J]. Sci Rep, 2017, 7: 42876. DOI: 10.1038/srep42876.
    [3] XUE Y, JIA X, LI L, et al. DDX5 promotes hepatocellular carcinoma tumorigenesis via Akt signaling pathway[J]. Biochem Biophys Res Commun, 2018, 503(4): 2885-2891. DOI: 10.1016/j.bbrc.2018.08.063.
    [4] ZHANG M, WENG W, ZHANG Q, et al. The lncRNA NEAT1 activates Wnt/β-catenin signaling and promotes colorectal cancer progression via interacting with DDX5[J]. J Hematol Oncol, 2018, 11(1): 113. DOI: 10.1186/s13045-018-0656-7.
    [5] CONTAT C, ANCEY PB, ZANGGER N, et al. Combined deletion of Glut1 and Glut3 impairs lung adenocarcinoma growth[J]. Elife, 2020, 9. DOI: 10.7554/eLife.53618.
    [6] SUN Q, GONG X, WU J, et al. Effect of lncRNA PVT1/miR186/KLF5 axis on the occurrence and progression of cholangiocarcinoma[J]. Biomed Res Int, 2021, 2021: 8893652. DOI: 10.1155/2021/8893652.
    [7] TU J, WU F, CHEN L, et al. Long non-coding RNA PCAT6 Induces M2 polarization of macrophages in cholangiocarcinoma via modulating miR-326 and RhoA-ROCK signaling pathway[J]. Front Oncol, 2020, 10: 605877. DOI: 10.3389/fonc.2020.605877.
    [8] HUANG L, JIANG X, KANG P, et al. Long non-coding RNA NNT-AS1 functions as an oncogenic gene through modulating miR-485/BCL9 in cholangiocarcinoma[J]. Cancer Manag Res, 2019, 11: 7739-7749. DOI: 10.2147/CMAR.S207801.
    [9] LIN H, YANG L, TIAN F, et al. Up-regulated LncRNA-ATB regulates the growth and metastasis of cholangiocarcinoma via miR-200c signals[J]. Onco Targets Ther, 2019, 12: 7561-7571. DOI: 10.2147/OTT.S217676.
    [10] YU Y, ZHANG M, LIU J, et al. Long non-coding RNA PVT1 promotes cell proliferation and migration by silencing ANGPTL4 expression in cholangiocarcinoma[J]. Mol Ther Nucleic Acids, 2018, 13: 503-513. DOI: 10.1016/j.omtn.2018.10.001.
    [11] XU Y, YAO Y, LENG K, et al. Long non-coding RNA UCA1 indicates an unfavorable prognosis and promotes tumorigenesis via regulating AKT/GSK-3β signaling pathway in cholangiocarcinoma[J]. Oncotarget, 2017, 8(56): 96203-96214. DOI: 10.18632/oncotarget.21884.
    [12] YANG L, DAI F, TANG L, et al. Macrophage differentiation induced by PMA is mediated by activation of RhoA/ROCK signaling[J]. J Toxicol Sci, 2017, 42(6): 763-771. DOI: 10.2131/jts.42.763.
    [13] GU Y, ZHU Z, PEI H, et al. Long non-coding RNA NNT-AS1 promotes cholangiocarcinoma cells proliferation and epithelial-to-mesenchymal transition through down-regulating miR-203[J]. Aging (Albany NY), 2020, 12(3): 2333-2346. DOI: 10.18632/aging.102747.
    [14] XU Y, YAO Y, JIANG X, et al. SP1-induced upregulation of lncRNA SPRY4-IT1 exerts oncogenic properties by scaffolding EZH2/LSD1/DNMT1 and sponging miR-101-3p in cholangiocarcinoma[J]. J Exp Clin Cancer Res, 2018, 37(1): 81. DOI: 10.1186/s13046-018-0747-x.
    [15] LI Z, JIANG X, HUANG L, et al. Up-regulation of ZFAS1 indicates dismal prognosis for cholangiocarcinoma and promotes proliferation and metastasis by modulating USF1 via miR-296-5p[J]. J Cell Mol Med, 2019, 23(12): 8258-8268. DOI: 10.1111/jcmm.14698.
    [16] WANG H, WANG L, TANG L, et al. Long noncoding RNA SNHG6 promotes proliferation and angiogenesis of cholangiocarcinoma cells through sponging miR-101-3p and activation of E2F8[J]. J Cancer, 2020, 11(10): 3002-3012. DOI: 10.7150/jca.40592.
    [17] LV Y, XIAO J, LIU J, et al. E2F8 is a potential therapeutic target for hepatocellular carcinoma[J]. J Cancer, 2017, 8(7): 1205-1213. DOI: 10.7150/jca.18255.
    [18] ROY S, GLASER S, CHAKRABORTY S. Inflammation and progression of cholangiocarcinoma: role of angiogenic and lymphangiogenic mechanisms[J]. Front Med (Lausanne), 2019, 6: 293. DOI: 10.3389/fmed.2019.00293.
    [19] LI X, LIU R, WANG Y, et al. Cholangiocyte-derived exosomal lncRNA H19 promotes macrophage activation and hepatic inflammation under cholestatic conditions[J]. Cells, 2020, 9(1): 190. DOI: 10.3390/cells9010190.
    [20] WANG WT, YE H, WEI PP, et al. LncRNAs H19 and HULC, activated by oxidative stress, promote cell migration and invasion in cholangiocarcinoma through a ceRNA manner[J]. J Hematol Oncol, 2016, 9(1): 117. DOI: 10.1186/s13045-016-0348-0.
    [21] KRISTENSEN LS, ANDERSEN MS, STAGSTED L, et al. The biogenesis, biology and characterization of circular RNAs[J]. Nat Rev Genet, 2019, 20(11): 675-691. DOI: 10.1038/s41576-019-0158-7.
    [22] TANG Q, HANN SS. Biological roles and mechanisms of circular RNA in human cancers[J]. Onco Targets Ther, 2020, 13: 2067-2092. DOI: 10.2147/OTT.S233672.
    [23] LI D, TANG Z, GAO Z, et al. Circular RNA CDR1as exerts oncogenic properties partially through regulating MicroRNA 641 in cholangiocarcinoma[J]. Mol Cell Biol, 2020, 40(15): e00042-20. DOI: 10.1128/MCB.00042-20.
    [24] XU Y, GAO P, WANG Z, et al. Circ-LAMP1 contributes to the growth and metastasis of cholangiocarcinoma via miR-556-5p and miR-567 mediated YY1 activation[J]. J Cell Mol Med, 2021, 25(7): 3226-3238. DOI: 10.1111/jcmm.16392.
    [25] ZHAO X, ZHANG X, ZHANG Z, et al. Comprehensive circular RNA expression profiling constructs a ceRNA network and identifies hsa_circ_0000673 as a novel oncogene in distal cholangiocarcinoma[J]. Aging (Albany NY), 2020, 12(22): 23251-23274. DOI: 10.18632/aging.104099.
    [26] XU Y, YAO Y, LIU Y, et al. Elevation of circular RNA circ_0005230 facilitates cell growth and metastasis via sponging miR-1238 and miR-1299 in cholangiocarcinoma[J]. Aging (Albany NY), 2019, 11(7): 1907-1917. DOI: 10.18632/aging.101872.
    [27] TU J, CHEN W, ZHENG L, et al. Circular RNA Circ0021205 promotes cholangiocarcinoma progression through mir-204-5p/RAB22A axis[J]. Front Cell Dev Biol, 2021, 9: 653207. DOI: 10.3389/fcell.2021.653207.
    [28] YOU J, WANG X. Circ_HIPK3 knockdown inhibits cell proliferation, migration and invasion of cholangiocarcinoma partly via mediating the miR-148a-3p/ULK1 pathway[J]. Cancer Manag Res, 2021, 13: 3827-3839. DOI: 10.2147/CMAR.S293823.
    [29] SU Y, YU T, WANG Y, et al. Circular RNA circDNM3OS functions as a miR-145-5p sponge to accelerate cholangiocarcinoma growth and glutamine metabolism by upregulating MORC2[J]. Onco Targets Ther, 2021, 14: 1117-1129. DOI: 10.2147/OTT.S289241.
    [30] HENSLEY CT, WASTI AT, DEBERARDINIS RJ. Glutamine and cancer: cell biology, physiology, and clinical opportunities[J]. J Clin Invest, 2013, 123(9): 3678-3684. DOI: 10.1172/JCI69600.
    [31] CHEN S, CHEN Z, LI Z, et al. Tumor-associated macrophages promote cholangiocarcinoma progression via exosomal Circ_0020256[J]. Cell Death Dis, 2022, 13(1): 94. DOI: 10.1038/s41419-022-04534-0.
  • 加载中
计量
  • 文章访问数:  251
  • HTML全文浏览量:  60
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-13
  • 录用日期:  2022-05-15
  • 出版日期:  2022-11-20
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回