中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多房棘球蚴源性外泌体对巨噬细胞极化的影响

冶赓博 陈功富 崔紫烟 吴俊杰 黄登亮 尹凤娇 王志鑫 于文昊 孔繁玉 樊海宁 任利

引用本文:
Citation:

多房棘球蚴源性外泌体对巨噬细胞极化的影响

DOI: 10.3969/j.issn.1001-5256.2023.04.019
基金项目: 

青海省科技厅项目 (2019-ZJ-7031)

伦理学声明:本研究于2019年7月3日经青海大学附属医院科研伦理委员会审批,批号为P-SL-2019042, 符合实验室动物管理与使用准则。
利益冲突声明:本研究不存在研究者、伦理委员会成员以及与公开研究成果有关的利益冲突。
作者贡献声明:冶赓博、陈功富负责课题设计,撰写论文;黄登亮、崔紫烟、吴俊杰负责实验实施,数据整理;孔繁玉、于文昊、尹凤娇查阅文献,分析数据;任利、樊海宁、王志鑫负责课题设计,指导撰写论文并最后定稿。
详细信息
    通信作者:

    任利, renliweimin_xn@126.com (ORCID: 0000-0001-6306-3533)

Effect of exosomes derived from Echinococcus multilocularis on macrophage polarization: A preliminary study

Research funding: 

Project of Qinghai Provincial Department of Science and Technology (2019-ZJ-7031)

More Information
  • 摘要:   目的  探究不同时间及浓度多房棘球蚴源性外泌体对巨噬细胞极化的影响。  方法  从60只造模BALB/c小鼠中随机选取4只,应用7.0T MRI观察腹腔病灶生长情况;解剖造模小鼠,通过腹腔病灶提取原头节进行体外培养,超速离心法从培养上清中提取外泌体,透射电镜及蛋白质免疫印迹法鉴定外泌体表征。将未加外泌体处理的巨噬细胞单独培养组设为对照组,不同浓度多房棘球蚴来源外泌体与巨噬细胞共培养组设为实验组(10 μg/mL组、50 μg/mL组),分别共培养48 h和72 h,显微镜下观察巨噬细胞形态变化。通过流式细胞术和酶联免疫吸附实验(ELISA)检测极化状态。符合正态分布的计量资料多组间比较采用单因素方差分析,进一步两两比较采用LSD-t检验。  结果  7.0T MRI显示小鼠腹腔内弥漫分布、大小不等的病灶形成;多房棘球蚴源性外泌体直径100 nm左右,呈杯型或茶托型,其表面标志物CD9、TSG101和CD63表达阳性。共培养后,实验组大部分细胞拉长,形态不规则,主要呈多角形;流式细胞术检测发现,共培养48 h,对照组CD16/32、CD206、CD369阳性率分别为(99.53±0.06)%、(90.27±0.21)%、(2.40±0.20)%;与对照组相比,除10 μg/mL外泌体组CD369阳性率[(0.80±0.00)%]降低(P<0.05),其余组别CD16/32、CD206、CD369阳性率均明显升高(P值均<0.000 1);共培养72 h,对照组CD16/32、CD206、CD369阳性率分别为(99.67±0.06)%、(85.47±0.55)%、(6.60±0.20)%,实验组CD16/32、CD206、CD369阳性率较对照组均明显升高(P值均<0.05)。ELISA结果示:共培养48 h,对照组IL-6及TNFα水平分别为(58.53±15.52) pg/mL、(320.70±5.30)pg/mL,实验组外泌体浓度为50 μg/mL时IL-6[(98.81±15.55) pg/mL]较对照组升高(P<0.05);共培养72 h,对照组IL-6及TNFα水平分别为(76.22±9.68)pg/mL、(323.90±87.37)pg/mL,当外泌体浓度为10 μg/mL时TNFα水平[(164.20±14.17)pg/mL]较对照组明显下降(P<0.05);当外泌体浓度为50 μg/mL时IL-6水平[(99.52±8.35)pg/mL]较对照组升高(P<0.05)。  结论  多房棘球蚴源性外泌体可调控巨噬细胞极化,且在浓度为10 μg/mL,共培养72 h后,可导致巨噬细胞M2样极化,具体方式有待进一步研究。

     

  • 图  1  7.0T MRI在模型小鼠中的应用

    注:a, T1WI像;b, T2WI像。

    Figure  1.  Application of 7.0T MRI in mouse model

    图  2  多房棘球蚴源性外泌体的鉴定

    注:a, TEM观察多房棘球蚴形态;b, Western Blot检测相关标志物表达。

    Figure  2.  Identification of exosomes derived from echinococcus multilocularis

    图  3  不同浓度外泌体与J774A.1细胞共培养的形态变化(×200)

    Figure  3.  Morphological changes of J774A.1 cells co-cultured with different concentrations of exosomes (×200)

    图  4  流式细胞术检测不同时间及浓度外泌体刺激巨噬细胞CD16/32、CD206、CD369表达量

    Figure  4.  The expressions of CD16/32, CD206 and CD369 in macrophages stimulated by exosomes at different time and concentration were detected by flow cytometry

    图  5  共培养后CD16/32、CD206、CD369变化趋势

    注:与对照组比较,*<0.05, ****P<0.000 1。

    Figure  5.  The change trend of CD16/32, CD206 and CD369 after co-culture

    图  6  ELISA检测不同浓度的外泌体刺激巨噬细胞后相关分子表达情况

    注:a, 48 h; b, 72 h。与对照组比较,*P<0.05。

    Figure  6.  ELISA was used to detect the expression of related molecules in macrophages stimulated by exosomes at different concentrations

    图  7  M2/M1型巨噬细胞相关分子比值变化趋势

    注:与对照组比较,***P<0.001,****P<0.000 1。

    Figure  7.  The trends in the molecular ratio of M2/M1 macrophages

    表  1  外泌体与巨噬细胞共培养48 h流式结果

    Table  1.   Flow cytometry results of exosomes co-cultured with macrophages for 48 hours

    分组 CD16/32(%) CD206(%) CD369(%)
    48 h 72 h 48 h 72 h 48 h 72 h
    对照组 99.53±0.06 99.67±0.06 90.27±0.21 85.47±0.55 2.40±0.20 6.60±0.20
    10 μg/mL组 100.00±0.002) 99.83±0.061) 98.67±0.212) 96.77±0.152) 0.80±0.001) 16.67±0.452)
    50 μg/mL组 100.00±0.002) 99.83±0.061) 98.70±0.202) 96.03±0.232) 4.50±0.302) 9.03±0.231)
    F 196.00 8.33 1 678.00 946.90 238.40 836.90
    P <0.000 1 <0.05 <0.000 1 <0.000 1 <0.000 1 <0.000 1
    注:与对照组比较,1)P<0.05, 2)P<0.000 1。
    下载: 导出CSV

    表  2  外泌体与巨噬细胞共培养ELISA结果

    Table  2.   ELISA results of exosomes co-cultured with macrophages

    组别 IL-6(pg/mL) TNFα(pg/mL)
    48 h 72 h 48 h 72 h
    对照组 58.53±15.52 76.22±9.68 320.70±5.30 323.90±87.37
    10 μg/mL组 52.19±13.16 76.46±6.03 324.70±33.48 164.20±14.171)
    50 μg/mL组 98.81±15.551) 99.52±8.351) 319.60±15.91 342.70±52.79
    F 8.77 8.07 0.05 8.15
    P <0.05 <0.05 0.95 <0.05
    注:与对照组比较,1)P<0.05。
    下载: 导出CSV

    表  3  M2/M1型巨噬细胞相关分子比值

    Table  3.   The ratio of M2/M1 macrophage-associated molecules

    组别 CD206/(CD16/32) CD369/(CD16/32)
    48 h 72 h 48 h 72 h
    对照组 0.907±0.002 0.858±0.005 0.024±0.002 0.066±0.002
    10 μg/mL组 0.987±0.0021) 0.969±0.0021) 0.008±0.0001) 0.169±0.0081)
    50 μg/mL组 0.987±0.0021) 0.962±0.0031) 0.045±0.0031) 0.090±0.0022)
    F 1 767.0 953.6 237.5 378.9
    P <0.000 1 <0.000 1 <0.000 1 <0.000 1
    注:与对照组比较,1)P<0.000 1,2)P<0.001。
    下载: 导出CSV
  • [1] Sichuan Hydatid Disease Clinical Medical Research Center, Hydatid Disease Professional Committee of Sichuan Medical Association. Expert consensus on diagnosis and treatment of alveolar hepatic echinococcosis(2020 version)[J]. Chin J Bases Clin Gen Surg, 2020, 27(1): 13-17. DOI: 10.7507/1007-9424.201911105.

    四川省包虫病临床医学研究中心, 四川省医师协会包虫病专业委员会. 泡型肝包虫病诊疗专家共识(2020版)[J]. 中国普外基础与临床杂志, 2020, 27(1): 13-17. DOI: 10.7507/1007-9424.201911105.
    [2] SCHULTZE JL, SCHMIDT SV. Molecular features of macrophage activation[J]. Semin Immunol, 2015, 27(6): 416-423. DOI: 10.1016/j.smim.2016.03.009.
    [3] SCHULTZE JL, FREEMAN T, HUME DA, et al. A transcriptional perspective on human macrophage biology[J]. Semin Immunol, 2015, 27(1): 44-50. DOI: 10.1016/j.smim.2015.02.001.
    [4] LI WH, ZHANG YX, ZHAO D, et al. Dectin-1 affects heart remodeling after myocardial infarction by regulating macrophage polarization[J]. Immunol J, 2021, 37(8): 692-697. DOI: 10.13431/j.cnki.immunol.j.20210096.

    李文华, 张一馨, 赵迪, 等. Dectin-1通过调节巨噬细胞极化影响心肌梗死后的心脏重塑[J]. 免疫学杂志, 2021, 37(8): 692-697. DOI: 10.13431/j.cnki.immunol.j.20210096.
    [5] MOSSER DM, EDWARDS JP. Exploring the full spectrum of macrophage activation[J]. Nat Rev Immunol, 2008, 8(12): 958-969. DOI: 10.1038/nri2448.
    [6] YAO T, XU ZH, YAO JY, et al. Effect of hepatocellular carcinoma cell-derived exosomes on M2 polarization of tumor-associated macrophages[J]. J Clin Hepatol, 2022, 38(3): 558-562. DOI: 10.3969/j.issn.1001-5256.2022.03.013.

    姚涛, 徐植红, 姚纪友, 等. 肝癌细胞来源外泌体对肿瘤相关M2型巨噬细胞极化的影响[J]. 临床肝胆病杂志, 2022, 38(3): 558-562. DOI: 10.3969/j.issn.1001-5256.2022.03.013.
    [7] van NIEL G, D'ANGELO G, RAPOSO G. Shedding light on the cell biology of extracellular vesicles[J]. Nat Rev Mol Cell Biol, 2018, 19(4): 213-228. DOI: 10.1038/nrm.2017.125.
    [8] GRUBOR NM, JOVANOVA-NESIC KD, SHOENFELD Y. Liver cystic echinococcosis and human host immune and autoimmune follow-up: A review[J]. World J Hepatol, 2017, 9(30): 1176-1189. DOI: 10.4254/wjh.v9.i30.1176.
    [9] WU Z, WANG L, LI J, et al. Extracellular vesicle-mediated communication within host-parasite interactions[J]. Front Immunol, 2018, 9: 3066. DOI: 10.3389/fimmu.2018.03066.
    [10] WANG L, LI Z, SHEN J, et al. Exosome-like vesicles derived by Schistosoma japonicum adult worms mediates M1 type immune- activity of macrophage[J]. Parasitol Res, 2015, 114(5): 1865-1873. DOI: 10.1007/s00436-015-4373-7.
    [11] ZAMANIAN M, FRASER LM, AGBEDANU PN, et al. Release of small RNA-containing exosome-like vesicles from the human filarial parasite brugia malayi[J]. PLoS Negl Trop Dis, 2015, 9(9): e0004069. DOI: 10.1371/journal.pntd.0004069.
    [12] LI Y, LIU Y, XIU F, et al. Characterization of exosomes derived from Toxoplasma gondii and their functions in modulating immune responses[J]. Int J Nanomedicine, 2018, 13: 467-477. DOI: 10.2147/IJN.S151110.
    [13] PAN BT, JOHNSTONE RM. Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor[J]. Cell, 1983, 33(3): 967-978. DOI: 10.1016/0092-8674(83)90040-5.
    [14] HESSVIK NP, LLORENTE A. Current knowledge on exosome biogenesis and release[J]. Cell Mol Life Sci, 2018, 75(2): 193-208. DOI: 10.1007/s00018-017-2595-9.
    [15] RAPOSO G, NIJMAN HW, STOORVOGEL W, et al. B lymphocytes secrete antigen-presenting vesicles[J]. J Exp Med, 1996, 183(3): 1161-1172. DOI: 10.1084/jem.183.3.1161.
    [16] COAKLEY G, MAIZELS RM, BUCK AH. Exosomes and other extracellular vesicles: The new communicators in parasite infections[J]. Trends Parasitol, 2015, 31(10): 477-489. DOI: 10.1016/j.pt.2015.06.009.
    [17] COAKLEY G, BUCK AH, MAIZELS RM. Host parasite communications-Messages from helminths for the immune system: Parasite communication and cell-cell interactions[J]. Mol Biochem Parasitol, 2016, 208(1): 33-40. DOI: 10.1016/j.molbiopara.2016.06.003.
    [18] SHAPOURI-MOGHADDAM A, MOHAMMADIAN S, VAZINI H, et al. Macrophage plasticity, polarization, and function in health and disease[J]. J Cell Physiol, 2018, 233(9): 6425-6440. DOI: 10.1002/jcp.26429.
    [19] ZHANG C, LIN R, LI Z, et al. Immune exhaustion of T cells in alveolar echinococcosis patients and its reversal by blocking checkpoint receptor TIGIT in a murine model[J]. Hepatology, 2020, 71(4): 1297-1315. DOI: 10.1002/hep.30896.
    [20] GAO YS, ZHU MB, GUO YZ, et al. Clinical analysis on hepatic hydatid disease in Yili River Valley[J]. Chin J Parasitol Parasitic Dis, 2005, 23(1): 3-13. DOI: 10.3969/j.issn.1000-7423.2005.01.003.

    高永盛, 朱马拜, 郭永忠, 等. 新疆伊犁河谷肝棘球蚴病临床资料分析[J]. 中国寄生虫学与寄生虫病杂志, 2005, 23(1): 3-13. DOI: 10.3969/j.issn.1000-7423.2005.01.003.
    [21] WANG DX, WANG H, FAN HN, et al. Study on the role of macrophage polarization during E. multilocularis-infection in mice[J]. Chin High Altitude Med Biology, 2018, 39(2): 118-122. DOI: 10.13452/j.cnki.jqmc.2018.02.010.

    王东旭, 王虎, 樊海宁, 等. 巨噬细胞极化在小鼠泡型包虫病中的作用[J]. 中国高原医学与生物学杂志, 2018, 39(2): 118-122. DOI: 10.13452/j.cnki.jqmc.2018.02.010.
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  231
  • HTML全文浏览量:  54
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-27
  • 录用日期:  2022-11-22
  • 出版日期:  2023-04-20
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回