中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

p53信号通路调控铁死亡在肝细胞癌中的作用机制

李震 刘江凯

引用本文:
Citation:

p53信号通路调控铁死亡在肝细胞癌中的作用机制

DOI: 10.3969/j.issn.1001-5256.2023.04.032
基金项目: 

国家自然科学基金(联合基金) (U1504825);

河南省高等学校重点科研项目 (20A360014);

河南省中医药拔尖人才培养项目资助 (Yuwei Chinese Medicine Letter [2021] No.15)

利益冲突声明:所有作者均声明不存在利益冲突。
作者贡献声明:李震负责课题设计,资料收集,分析文献资料,撰写论文;刘江凯负责拟定写作思路,指导撰写文章并最后定稿。
详细信息
    通信作者:

    刘江凯,xmlc001@126.com (ORCID: 0000-0002-1529-5089)

The mechanism of p53 signaling pathway regulating ferroptosis in hepatocellular carcinoma

Research funding: 

National Natural Science Foundation of China (Joint Fund) (U1504825);

Key Scientific Research Projects of Henan Province Colleges and Universities (20A360014);

Funded by Henan Province Traditional Chinese Medicine Top Talents Training Project (Yuwei Chinese Medicine Letter [2021] No.15)

More Information
    Corresponding author: LIU Jiangkai, xmlc001@126.com (ORCID: 0000-0002-1529-5089)
  • 摘要: 肝细胞癌(HCC)在我国是最常见的肝癌类型,其发生发展是一个复杂的病理过程。铁死亡作为一种新的细胞死亡方式,在治疗HCC方面有巨大的潜在作用。本文介绍了抑癌因子p53在调控铁死亡中的作用机制,简述其在HCC发生、发展中的作用。抑癌因子p53可以通过影响溶质载体家族7成员11、亚精胺/精胺N1-乙酰转移酶1、谷氨酰胺酶2、二肽基肽酶4和细胞周期蛋白依赖性激酶抑制剂1A来促进或抑制铁死亡,进而影响HCC的进展,通过调控铁死亡通路治疗HCC具有很大的应用前景。

     

  • [1] SUNG H, FERLAY J, SIEGEL RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
    [2] LI J, CAO F, YIN HL, et al. Ferroptosis: past, present and future[J]. Cell Death Dis, 2020, 11(2): 88. DOI: 10.1038/s41419-020-2298-2.
    [3] CAO JY, DIXON SJ. Mechanisms of ferroptosis[J]. Cell Mol Life Sci, 2016, 73(11-12): 2195-2209. DOI: 10.1007/s00018-016-2194-1.
    [4] CHEN C, JIANG JT. Mechanisms of ferroptosis and its applications in cancers[J]. Chin J Exp Surg, 2019, 36(11): 2110-2114. DOI: 10.3760/cma.j.issn.1001-9030.2019.11.058.

    陈辰, 蒋敬庭. 铁死亡机制及在肿瘤中的应用进展[J]. 中华实验外科杂志, 2019, 36(11): 2110-2114. DOI: 10.3760/cma.j.issn.1001-9030.2019.11.058.
    [5] WANG HT, JU J, WANG SC, et al. Insights into ferroptosis, a novel target for the therapy of cancer[J]. Front Oncol, 2022, 12: 812534. DOI: 10.3389/fonc.2022.812534.
    [6] LIU M, KONG XY, YAO Y, et al. The critical role and molecular mechanisms of ferroptosis in antioxidant systems: a narrative review[J]. Ann Transl Med, 2022, 10(6): 368. DOI: 10.21037/atm-21-6942.
    [7] PAN F, LIN X, HAO L, et al. The critical role of ferroptosis in hepatocellular carcinoma[J]. Front Cell Dev Biol, 2022, 10: 882571. DOI: 10.3389/fcell.2022.882571.
    [8] LIEBL MC, HOFMANN TG. The role of p53 signaling in colorectal cancer[J]. Cancers (Basel), 2021, 13(9): 2125. DOI: 10.3390/cancers13092125.
    [9] LUO Q, BEAVER JM, LIU Y, et al. dynamics of p53: a master decider of cell fate[J]. Genes (Basel), 2017, 8(2): 66. DOI: 10.3390/genes8020066.
    [10] HARRIS CC. Structure and function of the p53 tumor suppressor gene: clues for rational cancer therapeutic strategies[J]. J Natl Cancer Inst, 1996, 88(20): 1442-1455. DOI: 10.1093/jnci/88.20.1442.
    [11] LIU J, ZHANG C, WANG J, et al. The regulation of ferroptosis by tumor suppress or p53 and its pathway[J]. Int J Mol Sci, 2020, 21(21): 8387. DOI: 10.3390/ijms21218387.
    [12] STEIN Y, ROTTER V, ALONI-GRINSTEIN R. Gain-of-function mutant p53: all the roads lead to tumorigenesis[J]. Int J Mol Sci, 2019, 20(24): 6197. DOI: 10.3390/ijms20246197.
    [13] KOPPULA P, ZHANG Y, ZHUANG L, et al. Amino acid transporter SLC7A11/xCT at the crossroads of regulating redox homeostasis and nutrient dependency of cancer[J]. Cancer Commun (Lond), 2018, 38(1): 12. DOI: 10.1186/s40880-018-0288-x.
    [14] JIANG L, KON N, LI T, et al. Ferroptosis as a p53-mediated activity during tumour suppression[J]. Nature, 2015, 520(7545): 57-62. DOI: 10.1038/nature14344.
    [15] WANG SJ, LI D, OU Y, et al. Acetylation is crucial for p53-mediated ferroptosis and tumor suppression[J]. Cell Rep, 2016, 17(2): 366-373. DOI: 10.1016/j.celrep.2016.09.022.
    [16] WANG Y, YANG L, ZHANG X, et al. Epigenetic regulation of ferroptosis by H2B mo- noubiquitination and p53[J]. EMBO Rep, 2019, 20(7): e47563. DOI: 10.15252/embr.201847563.
    [17] MOU Y, ZHANG L, LIU Z, et al. Abundant expression of ferroptosis-related SAT1 is related to unfavorable outcome and immune cell infiltration in low-grade glioma[J]. BMC Cancer, 2022, 22(1): 215. DOI: 10.1186/s12885-022-09313-w.
    [18] MANDAL S, MANDAL A, PARK MH. Depletion of the polyamines spermidine and spermine by overexpression of spermidine/spermine N1-acetyltransferase 1(SAT1) leads to mitochondria-mediated apoptosis in mammalian cells[J]. Biochem J, 2015, 468(3): 435-447. DOI: 10.1042/BJ20150168.
    [19] OU Y, WANG SJ, LI D, et al. Activation of SAT1 engages polyamine metabolism with p53-mediated ferroptotic responses[J]. Proc Natl Acad Sci U S A, 2016, 113(44): E6806-E6812. DOI: 10.1073/pnas.1607152113.
    [20] ZHANG T, CUI Y, WU Y, et al. Mitochondrial GCN5L1 regulates glutaminase acetylation and hepatocellular carcinoma[J]. Clin Transl Med, 2022, 12(5): e852. DOI: 10.1002/ctm2.852.
    [21] HU W, ZHANG C, WU R, et al. Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function[J]. Proc Natl Acad Sci U S A, 2010, 107(16): 7455-7460. DOI: 10.1073/pnas.1001006107.
    [22] SUZUKI S, TANAKA T, POYUROVSKY MV, et al. Phosphate-activated glutaminase (GLS2), a p53-inducible regulator of glutamine metabolism and reactive oxygen species[J]. Proc Natl Acad Sci U S A, 2010, 107(16): 7461-7466. DOI: 10.1073/pnas.1002459107.
    [23] ZHANG W, GAI C, DING D, et al. Targeted p53 on small-molecules-induced ferroptosis in cancers[J]. Front Oncol, 2018, 8: 507. DOI: 10.3389/fonc.2018.00507.
    [24] XIE Y, ZHU S, SONG X, et al. The tumor suppressor p53 limits ferroptosis by blocking DPP4 activity[J]. Cell Rep, 2017, 20(7): 1692-1704. DOI: 10.1016/j.celrep.2017.07.055.
    [25] VIALE A, de FRANCO F, ORLETH A, et al. Cell-cycle restriction limits DNA damage and maintains self-renewal of leukaemia stem cells[J]. Nature, 2009, 457(7225): 51-56. DOI: 10.1038/nature07618.
    [26] SHAMLOO B, USLUER S. p21 in cancer research[J]. Cancers (Basel), 2019, 11(8): 1178. DOI: 10.3390/cancers11081178.
    [27] TARANGELO A, MAGTANONG L, BIEGING-ROLETT KT, et al. p53 suppresses metabolic stress-in- duced ferroptosis in cancer cells[J]. Cell Rep, 2018, 22(3): 569-575. DOI: 10.1016/j.celrep.2017.12.077.
    [28] XIA X, FAN X, ZHAO M, et al. The relationship between ferroptosis and tumors: a novel landscape for therapeutic approach[J]. Curr Gene Ther, 2019, 19(2): 117-124. DOI: 10.2174/1566523219666190628152137.
    [29] BEKRIC D, OCKER M, MAYR C, et al. Ferroptosis in hepatocellular carcinoma: mec- hanisms, drug targets and approaches to clinical translation[J]. Cancers (Basel), 2022, 14(7): 1826. DOI: 10.3390/cancers14071826.
    [30] LI Y, XIA J, SHAO F, et al. Sorafenib induces mitochondrial dysfunction and exhibits synergistic effect with cysteine depletion by promoting HCC cells ferroptosis[J]. Biochem Biophys Res Commun, 2021, 534: 877-884. DOI: 10.1016/j.bbrc.2020.10.083.
    [31] ZHANG FY, ADILA·YKP, ZHAO JM, et al. Mechanism of ferroptosis and its role in liver diseases[J]. J Clin Hepatol, 2021, 37(6): 1454-1458. DOI: 10.3969/j.issn.1001-5256.2021.06.049.

    张飞宇, 阿迪拉·亚克普, 赵金明, 等. 铁死亡的发生机制及在肝脏疾病中的作用[J]. 临床肝胆病杂志, 2021, 37(6): 1454-1458. DOI: 10.3969/j.issn.1001-5256.2021.06.049.
    [32] ZHANG NN, LU W. Targeted therapy for hepatocellular carcinoma[J]. J Clin Hepatol, 2021, 37(8): 1753-1757. DOI: 10.3969/j.issn.1001-5256.2021.08.003.

    张宁宁, 陆伟. 肝细胞癌的靶向治疗[J]. 临床肝胆病杂志, 2021, 37(8): 1753-1757. DOI: 10.3969/j.issn.1001-5256.2021.08.003.
    [33] SUN X, NIU X, CHEN R, et al. Metallothionein-1G facilitates sorafenib resistance through inhibition of ferroptosis[J]. Hepatology, 2016, 64(2): 488-500. DOI: 10.1002/hep.28574.
    [34] LI YC, ZHOU Y, WANG X, et al. DHA inhibits proliferation of human hepatocellular carcinoma cells by inducing ferroptosis[J]. Chin J Biochem Mol Biol, 2019, 35(12): 1361-1366. DOI: 10.13865/j.cnki.cjbmb.2019.10.1188.

    李艳纯, 周怡, 王鑫, 等. 二氢青蒿素通过诱导铁死亡抑制肝癌细胞生长[J]. 中国生物化学与分子生物学报, 2019, 35(12): 1361-1366. DOI: 10.13865/j.cnki.cjbmb.2019.10.1188.
    [35] LIANG JY, WANG DS, LIN HC, et al. A novel ferroptosis-related gene signature for overall survival prediction in patients with hepatocellular carcinoma[J]. Int J Biol Sci, 2020, 16(13): 2430-2441. DOI: 10.7150/ijbs.45050.
  • 加载中
计量
  • 文章访问数:  495
  • HTML全文浏览量:  57
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-30
  • 录用日期:  2022-08-31
  • 出版日期:  2023-04-20
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回