中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

肝脏疾病中内质网应激与铁死亡的关系

叶露 李秀芹 王建青

引用本文:
Citation:

肝脏疾病中内质网应激与铁死亡的关系

DOI: 10.3969/j.issn.1001-5256.2023.04.036
基金项目: 

国家自然科学基金 (82073566);

安徽省高校优秀青年人才支持计划资助项目 (gxyq2019014);

临床药学与药理学共建项目 (2020)

利益冲突声明:所有作者均声明不存在利益冲突。
作者贡献声明:叶露负责查阅文章,撰写论文;李秀芹、王建青负责修改文章并最后定稿。
详细信息
    通信作者:

    王建青,jianqingwang81@126.com (ORCID: 0000-0002-7935-9520)

Association between endoplasmic reticulum stress and ferroptosis in liver diseases

Research funding: 

National Natural Science Foundation of China (82073566);

The Program of Excellent Young Talents in Universities of Anhui Province (gxyq2019014);

Clinical Pharmacy and Pharmacology (2020)

More Information
  • 摘要: 肝脏疾病的发病机制研究一直广受关注。内质网应激(ERS)是细胞的一种自我保护机制,但持续、严重的应激可诱导凋亡、自噬和铁死亡。其中,铁死亡作为近年研究热点,主要特征为铁依赖性脂质过氧化物的积累,在肝脏疾病的发生发展中发挥着关键作用,但目前关于肝脏疾病中ERS参与铁死亡的相关研究尚少。本文归纳了ERS相关信号通路和铁死亡的发生机制及其在肝脏疾病中的研究进展,为肝病治疗研究提供更多方向。

     

  • 图  1  肝脏疾病中ERS与铁死亡的关系

    Figure  1.  Relationship between endoplasmic reticulum stress and ferroptosis in liver diseases

  • [1] WANG M, KAUFMAN RJ. Protein misfolding in the endoplasmic reticulum as a conduit to human disease[J]. Nature, 2016, 529(7586): 326-335. DOI: 10.1038/nature17041.
    [2] HETZ C, PAPA FR. The unfolded protein response and cell fate control[J]. Mol Cell, 2018, 69(2): 169-181. DOI: 10.1016/j.molcel.2017.06.017.
    [3] HAN CC, WAN FS. New insights into the role of endoplasmic reticulum stress in breast cancer metastasis[J]. J Breast Cancer, 2018, 21(4): 354-362. DOI: 10.4048/jbc.2018.21.e51.
    [4] UDDIN MS, TEWARI D, SHARMA G, et al. Molecular mechanisms of ER stress and UPR in the pathogenesis of alzheimer's disease[J]. Mol Neurobiol, 2020, 57(7): 2902-2919. DOI: 10.1007/s12035-020-01929-y.
    [5] HETZ C, ZHANG K, KAUFMAN RJ. Mechanisms, regulation and functions of the unfolded protein response[J]. Nat Rev Mol Cell Biol, 2020, 21(8): 421-438. DOI: 10.1038/s41580-020-0250-z.
    [6] KOPP MC, LARBURU N, DURAIRAJ V, et al. UPR proteins IRE1 and PERK switch BiP from chaperone to ER stress sensor[J]. Nat Struct Mol Biol, 2019, 26(11): 1053-1062. DOI: 10.1038/s41594-019-0324-9.
    [7] CALFON M, ZENG H, URANO F, et al. IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA[J]. Nature, 2002, 415(6867): 92-96. DOI: 10.1038/415092a.
    [8] YOSHIDA H, MATSUI T, YAMAMOTO A, et al. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor[J]. Cell, 2001, 107(7): 881-891. DOI: 10.1016/s0092-8674(01)00611-0.
    [9] DONNELLY N, GORMAN AM, GUPTA S, et al. The eIF2α kinases: their structures and functions[J]. Cell Mol Life Sci, 2013, 70(19): 3493-3511. DOI: 10.1007/s00018-012-1252-6.
    [10] MAMADY H, STOREY KB. Coping with the stress: expression of ATF4, ATF6, and downstream targets in organs of hibernating ground squirrels[J]. Arch Biochem Biophys, 2008, 477(1): 77-85. DOI: 10.1016/j.abb.2008.05.006.
    [11] SANTAMARÍA PG, MAZÓN MJ, ERASO P, et al. UPR: An upstream signal to EMT induction in cancer[J]. J Clin Med, 2019, 8(5): 624. DOI: 10.3390/jcm8050624.
    [12] KIM JM, KIM JS, KIM N, et al. Helicobacter pylori vacuolating cytotoxin induces apoptosis via activation of endoplasmic reticulum stress in dendritic cells[J]. J Gastroenterol Hepatol, 2015, 30(1): 99-108. DOI: 10.1111/jgh.12663.
    [13] WALTER P, RON D. The unfolded protein response: from stress pathway to homeostatic regulation[J]. Science, 2011, 334(6059): 1081-1086. DOI: 10.1126/science.1209038.
    [14] SHORE GC, PAPA FR, OAKES SA. Signaling cell death from the endoplasmic reticulum stress response[J]. Curr Opin Cell Biol, 2011, 23(2): 143-149. DOI: 10.1016/j.ceb.2010.11.003.
    [15] DIXON SJ, LEMBERG KM, LAMPRECHT MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5): 1060-1072. DOI: 10.1016/j.cell.2012.03.042.
    [16] STOCKWELL BR, FRIEDMANN ANGELI JP, BAYIR H, et al. Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and disease[J]. Cell, 2017, 171(2): 273-285. DOI: 10.1016/j.cell.2017.09.021.
    [17] KAGAN VE, MAO G, QU F, et al. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis[J]. Nat Chem Biol, 2017, 13(1): 81-90. DOI: 10.1038/nchembio.2238.
    [18] JIANG L, HICKMAN JH, WANG SJ, et al. Dynamic roles of p53-mediated metabolic activities in ROS-induced stress responses[J]. Cell Cycle, 2015, 14(18): 2881-2885. DOI: 10.1080/15384101.2015.1068479.
    [19] JIANG L, KON N, LI T, et al. Ferroptosis as a p53-mediated activity during tumour suppression[J]. Nature, 2015, 520(7545): 57-62. DOI: 10.1038/nature14344.
    [20] CHEN D, FAN Z, RAUH M, et al. ATF4 promotes angiogenesis and neuronal cell death and confers ferroptosis in a xCT-dependent manner[J]. Oncogene, 2017, 36(40): 5593-5608. DOI: 10.1038/onc.2017.146.
    [21] XU M, TAO J, YANG Y, et al. Ferroptosis involves in intestinal epithelial cell death in ulcerative colitis[J]. Cell Death Dis, 2020, 11(2): 86. DOI: 10.1038/s41419-020-2299-1.
    [22] PARK EJ, PARK YJ, LEE SJ, et al. Whole cigarette smoke condensates induce ferroptosis in human bronchial epithelial cells[J]. Toxicol Lett, 2019, 303: 55-66. DOI: 10.1016/j.toxlet.2018.12.007.
    [23] WANG CE, XU WT, GONG J, et al. Progress in the treatment of nonalcoholic fatty liver disease[J]. Clin J Med Offic, 2022, 50(9): 897-899, 903. DOI: 10.16680/j.1671-3826.2022.09.06.

    王彩娥, 许文涛, 宫建, 等. 非酒精性脂肪性肝病治疗研究进展[J]. 临床军医杂志, 2022, 50(9): 897-899, 903. DOI: 10.16680/j.1671-3826.2022.09.06.
    [24] JIANG Y, HUANG JM, LIANG YZ, et al. Basic study on the mechanism of iron death in non-alcoholic fatty liver disease[J]. J Guangxi Med Univ, 2022, 39(1): 13-20. DOI: 10.16190/j.cnki.45-1211/r.2022.01.003.

    姜嫄, 黄锦明, 梁瑜祯, 等. 非酒精性脂肪性肝病铁死亡机制的基础研究[J]. 广西医科大学学报, 2022, 39(1): 13-20. DOI: 10.16190/j.cnki.45-1211/r.2022.01.003.
    [25] WEI S, QIU T, WANG N, et al. Ferroptosis mediated by the interaction between Mfn2 and IREα promotes arsenic-induced nonalcoholic steatohepatitis[J]. Environ Res, 2020, 188: 109824. DOI: 10.1016/j.envres.2020.109824.
    [26] WANG KJ, HUANG ZH, SHI QL, et al. Research progress of precise hepatectomy for hepatocellular carcinoma[J]. China Med Herald, 2021, 18(23): 43-46. https://www.cnki.com.cn/Article/CJFDTOTAL-YYCY202123010.htm

    王克净, 黄祖鸿, 石清兰, 等. 肝细胞癌精准肝切除的研究进展[J]. 中国医药导报, 2021, 18(23): 43-46. https://www.cnki.com.cn/Article/CJFDTOTAL-YYCY202123010.htm
    [27] HASSANNIA B, VANDENABEELE P, VANDEN BERGHE T. Targeting ferroptosis to iron out cancer[J]. Cancer Cell, 2019, 35(6): 830-849. DOI: 10.1016/j.ccell.2019.04.002.
    [28] WANG Z, LI M, LIU Y, et al. Dihydroartemisinin triggers ferroptosis in primary liver cancer cells by promoting and unfolded protein response-induced upregulation of CHAC1 expression[J]. Oncol Rep, 2021, 46(5): 240. DOI: 10.3892/or.2021.8191.
    [29] SPYCHALSKI P, KOBIELA J, ANTOSZEWSKA M, et al. Patient specific outcomes of charged particle therapy for hepatocellular carcinoma - A systematic review and quantitative analysis[J]. Radiother Oncol, 2019, 132: 127-134. DOI: 10.1016/j.radonc.2018.12.012.
    [30] ZHENG X, LIU B, LIU X, et al. PERK regulates the sensitivity of hepatocellular carcinoma cells to high-LET carbon ions via either apoptosis or ferroptosis[J]. J Cancer, 2022, 13(2): 669-680. DOI: 10.7150/jca.61622.
    [31] KANG R, KROEMER G, TANG D. The tumor suppressor protein p53 and the ferroptosis network[J]. Free Radic Biol Med, 2019, 133: 162-168. DOI: 10.1016/j.freeradbiomed.2018.05.074.
    [32] WANG YW, LIANG YR. Research progress on liver transplantation for drug-induced liver injury[J]. Ogran Transplant, 2022, 13(3): 338-343. DOI: 10.3969/j.issn.1674-7445.2022.03.009.

    王砚伟, 梁雨荣. 药物性肝损伤肝移植治疗进展[J]. 器官移植, 2022, 13(3): 338-343. DOI: 10.3969/j.issn.1674-7445.2022.03.009.
    [33] TAK J, KIM YS, KIM TH, et al. Gα12 overexpression in hepatocytes by ER stress exacerbates acute liver injury via ROCK1-mediated miR-15a and ALOX12 dysregulation[J]. Theranostics, 2022, 12(4): 1570-1588. DOI: 10.7150/thno.67722.
    [34] European Association for the Study of the Liver. EASL clinical practice guidelines: Management of alcohol-related liver disease[J]. J Hepatol, 2018, 69(1): 154-181. DOI: 10.1016/j.jhep.2018.03.018.
    [35] CZAJA AJ. Review article: iron disturbances in chronic liver diseases other than haemochromatosis - pathogenic, prognostic, and therapeutic implications[J]. Aliment Pharmacol Ther, 2019, 49(6): 681-701. DOI: 10.1111/apt.15173.
    [36] MUELLER K, SUNAMI Y, STUETZLE M, et al. CHOP-mediated hepcidin suppression modulates hepatic iron load[J]. J Pathol, 2013, 231(4): 532-542. DOI: 10.1002/path.4221.
  • 加载中
图(1)
计量
  • 文章访问数:  646
  • HTML全文浏览量:  222
  • PDF下载量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-24
  • 录用日期:  2022-10-08
  • 出版日期:  2023-04-20
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回