中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R
Volume 37 Issue 10
Oct.  2021
Turn off MathJax
Article Contents

Role and mechanism of exosome non-coding RNA in liver fibrosis

DOI: 10.3969/j.issn.1001-5256.2021.10.036
Research funding:

National Natural Science Foundation of China (81973825);

National Administration of Traditional Chinese Medicine: 2019 Project of building evidence based practice capacity for TCM (2019XZZX-NB001);

Open Fund of the Key Laboratory of Xin'an Medical Education Ministry of Anhui University of Traditional Chinese Medicine (2020xayx12)

  • Received Date: 2021-03-01
  • Accepted Date: 2021-03-19
  • Published Date: 2021-10-20
  • Liver fibrosis is the initial stage of the development of various chronic liver diseases into liver cirrhosis and is a reversible process. As a subset of extracellular vesicles that can carry active substances such as proteins, lipids, and RNA, exosomes are involved in intercellular signal communication and have attracted more and more attention in recent years. Studies have shown that non-coding RNAs in exosomes play an important role in the development and progression of liver fibrosis. This article discusses the mechanism of action of exosome long non- coding RNAs (including MALAT1, H19, GAS5, MEG3, PVT1, and P21), exosome short non-coding RNAs (including micro-RNA, small nucleolus RNA, PIWI-interacting RNA, and small interference RNA), and exosome circular RNA in the development and progression of liver fibrosis, and it is concluded that exosomes from different sources (such as hepatocytes and cholangiocytes) carrying non-coding RNAs mainly affect the activation, proliferation, migration, and transformation of hepatic stellate cells. In-depth studies of exosome non-coding RNAs in the future are expected to find potential new targets for the treatment of liver fibrosis.

     

  • loading
  • [1]
    SASAKI R, KANDA T, YOKOSUKA O, et al. Exosomes and hepatocellular carcinoma: From bench to bedside[J]. Int J Mol Sci, 2019, 20(6): 1406. DOI: 10.3390/ijms20061406.
    [2]
    YU F, LU Z, CAI J, et al. MALAT1 functions as a competing endogenous RNA to mediate Rac1 expression by sequestering miR-101b in liver fibrosis[J]. Cell Cycle, 2015, 14(24): 3885-3896. DOI: 10.1080/15384101.2015.1120917.
    [3]
    WU Y, LIU X, ZHOU Q, et al. Silent information regulator 1 (SIRT1) ameliorates liver fibrosis via promoting activated stellate cell apoptosis and reversion[J]. Toxicol Appl Pharmacol, 2015, 289(2): 163-176. DOI: 10.1016/j.taap.2015.09.028.
    [4]
    DAI X, CHEN C, XUE J, et al. Exosomal MALAT1 derived from hepatic cells is involved in the activation of hepatic stellate cells via miRNA-26b in fibrosis induced by arsenite[J]. Toxicol Lett, 2019, 316: 73-84. DOI: 10.1016/j.toxlet.2019.09.008.
    [5]
    XIAO Y, LIU R, LI X, et al. Long noncoding RNA H19 contributes to cholangiocyte proliferation and cholestatic liver fibrosis in biliary atresia[J]. Hepatology, 2019, 70(5): 1658-1673. DOI: 10.1002/hep.30698.
    [6]
    YU F, ZHENG J, MAO Y, et al. Long non-coding RNA growth arrest-specific transcript 5 (GAS5) inhibits liver fibrogenesis through a mechanism of competing endogenous RNA[J]. J Biol Chem, 2015, 290(47): 28286-28298. DOI: 10.1074/jbc.M115.683813.
    [7]
    DONG Z, LI S, WANG X, et al. lncRNA GAS5 restrains CCl(4)-induced hepatic fibrosis by targeting miR-23a through the PTEN/PI3K/Akt signaling pathway[J]. Am J Physiol Gastrointest Liver Physiol, 2019, 316(4): g539-g550. DOI: 10.1152/ajpgi.00249.2018.
    [8]
    KOLDEMIR O, ÖZGVR E, GEZER U. Accumulation of GAS5 in exosomes is a marker of apoptosis induction[J]. Biomed Rep, 2017, 6(3): 358-362. DOI: 10.3892/br.2017.848.
    [9]
    CHEN L, YANG W, GUO Y, et al. Exosomal lncRNA GAS5 regulates the apoptosis of macrophages and vascular endothelial cells in atherosclerosis[J]. PLoS One, 2017, 12(9): e0185406. DOI: 10.1371/journal.pone.0185406.
    [10]
    ZHU X, WANG X, WANG Y, et al. Exosomal long non-coding RNA GAS5 suppresses Th1 differentiation and promotes Th2 differentiation via downregulating EZH2 and T-bet in allergic rhinitis[J]. Mol Immunol, 2020, 118: 30-39. DOI: 10.1016/j.molimm.2019.11.009.
    [11]
    FILIPPOV-LEVY N, COHEN-SCHUSSHEIM H, TROPÉ CG, et al. Expression and clinical role of long non-coding RNA in high-grade serous carcinoma[J]. Gynecol Oncol, 2018, 148(3): 559-566. DOI: 10.1016/j.ygyno.2018.01.004.
    [12]
    ZHANG J, LIU SC, LUO XH, et al. Exosomal long noncoding RNAs are differentially expressed in the cervicovaginal lavage samples of cervical cancer patients[J]. J Clin Lab Anal, 2016, 30(6): 1116-1121. DOI: 10.1002/jcla.21990.
    [13]
    LIU F, CHEN Y, LIU R, et al. Long noncoding RNA (MEG3) in urinal exosomes functions as a biomarker for the diagnosis of Hunner-type interstitial cystitis (HIC)[J]. J Cell Biochem, 2020, 121(2): 1227-1237. DOI: 10.1002/jcb.29356.
    [14]
    HE Y, WU YT, HUANG C, et al. Inhibitory effects of long noncoding RNA MEG3 on hepatic stellate cells activation and liver fibrogenesis[J]. Biochim Biophys Acta, 2014, 1842(11): 2204-2215. DOI: 10.1016/j.bbadis.2014.08.015.
    [15]
    YU F, GENG W, DONG P, et al. LncRNA-MEG3 inhibits activation of hepatic stellate cells through SMO protein and miR-212[J]. Cell Death Dis, 2018, 9(10): 1014. DOI: 10.1038/s41419-018-1068-x.
    [16]
    YU F, DONG B, DONG P, et al. Hypoxia induces the activation of hepatic stellate cells through the PVT1-miR-152-ATG14 signaling pathway[J]. Mol Cell Biochem, 2020, 465(1-2): 115-123. DOI: 10.1007/s11010-019-03672-y.
    [17]
    MENG Y, QIU S, SUN L, et al. Knockdown of exosome-mediated lnc-PVT1 alleviates lipopolysaccharide-induced osteoarthritis progression by mediating the HMGB1/TLR4/NF-κB pathway via miR-93-5p[J]. Mol Med Rep, 2020, 22(6): 5313-5325. DOI: 10.3892/mmr.2020.11594.
    [18]
    WU L, XIA J, LI D, et al. Mechanisms of M2 macrophage-derived exosomal long non-coding RNA PVT1 in regulating Th17 cell response in experimental autoimmune encephalomyelitisa[J]. Front Immunol, 2020, 11: 1934. DOI: 10.3389/fimmu.2020.01934.
    [19]
    YU F, ZHOU G, HUANG K, et al. Serum lincRNA-p21 as a potential biomarker of liver fibrosis in chronic hepatitis B patients[J]. J Viral Hepat, 2017, 24(7): 580-588. DOI: 10.1111/jvh.12680.
    [20]
    ZHENG J, DONG P, MAO Y, et al. lincRNA-p21 inhibits hepatic stellate cell activation and liver fibrogenesis via p21[J]. FEBS J, 2015, 282(24): 4810-4821. DOI: 10.1111/febs.13544.
    [21]
    TU X, ZHANG Y, ZHENG X, et al. TGF-β-induced hepatocyte lincRNA-p21 contributes to liver fibrosis in mice[J]. Sci Rep, 2017, 7(1): 2957. DOI: 10.1038/s41598-017-03175-0.
    [22]
    CASTELLANO JJ, MARRADES RM, MOLINS L, et al. Extracellular vesicle lincRNA-p21 expression in tumor-draining pulmonary vein defines prognosis in NSCLC and modulates endothelial cell behavior[J]. Cancers (Basel), 2020, 12(3): 734. DOI: 10.3390/cancers12030734.
    [23]
    MA T, CAI X, WANG Z, et al. miR-200c accelerates hepatic stellate cell-induced liver fibrosis via targeting the FOG2/PI3K pathway[J]. Biomed Res Int, 2017, 2017: 2670658. DOI: 10.1155/2017/2670658.
    [24]
    TAO L, XUE D, SHEN D, et al. MicroRNA-942 mediates hepatic stellate cell activation by regulating BAMBI expression in human liver fibrosis[J]. Arch Toxicol, 2018, 92(9): 2935-2946. DOI: 10.1007/s00204-018-2278-9.
    [25]
    KIM JY, KIM KM, YANG JH, et al. Induction of E6AP by microRNA-302c dysregulation inhibits TGF-β-dependent fibrogenesis in hepatic stellate cells[J]. Sci Rep, 2020, 10(1): 444. DOI: 10.1038/s41598-019-57322-w.
    [26]
    HUANG Y, FAN X, TAO R, et al. Effect of miR-182 on hepatic fibrosis induced by Schistosomiasis japonica by targeting FOXO1 through PI3K/AKT signaling pathway[J]. J Cell Physiol, 2018, 233(10): 6693-6704. DOI: 10.1002/jcp.26469.
    [27]
    SONG LY, MA YT, WU CF, et al. MicroRNA-195 activates hepatic stellate cells in vitro by targeting Smad7[J]. Biomed Res Int, 2017, 2017: 1945631. DOI: 10.1155/2017/1945631.
    [28]
    ROY S, BENZ F, VARGAS CARDENAS D, et al. miR-30c and miR-193 are a part of the TGF-β-dependent regulatory network controlling extracellular matrix genes in liver fibrosis[J]. J Dig Dis, 2015, 16(9): 513-524. DOI: 10.1111/1751-2980.12266.
    [29]
    TU X, ZHENG X, LI H, et al. MicroRNA-30 protects against carbon tetrachloride-induced liver fibrosis by attenuating transforming growth factor beta signaling in hepatic stellate cells[J]. Toxicol Sci, 2015, 146(1): 157-169. DOI: 10.1093/toxsci/kfv081.
    [30]
    LIAO X, ZHAN W, TIAN T, et al. MicroRNA-326 attenuates hepatic stellate cell activation and liver fibrosis by inhibiting TLR4 signaling[J]. J Cell Biochem, 2019. DOI: 10.1002/jcb.29520.[Online ahead of print]
    [31]
    KENNEDY LL, MENG F, VENTER JK, et al. Knockout of microRNA-21 reduces biliary hyperplasia and liver fibrosis in cholestatic bile duct ligated mice[J]. Lab Invest, 2016, 96(12): 1256-1267. DOI: 10.1038/labinvest.2016.112.
    [32]
    HAO XJ, XU CZ, WANG JT, et al. miR-21 promotes proliferation and inhibits apoptosis of hepatic stellate cells through targeting PTEN/PI3K/AKT pathway[J]. J Recept Signal Transduct Res, 2018, 38(5-6): 455-461. DOI: 10.1080/10799893.2019.1585452.
    [33]
    YANG J, LU Y, YANG P, et al. MicroRNA-145 induces the senescence of activated hepatic stellate cells through the activation of p53 pathway by ZEB2[J]. J Cell Physiol, 2019, 234(5): 7587-7599. DOI: 10.1002/jcp.27521.
    [34]
    MEN R, WEN M, ZHAO M, et al. MircoRNA-145 promotes activation of hepatic stellate cells via targeting krüppel-like factor 4[J]. Sci Rep, 2017, 7: 40468. DOI: 10.1038/srep40468.
    [35]
    MUHAMMAD YUSUF AN, RAJA ALI RA, MUHAMMAD NAWAWI KN, et al. Potential biomarkers in NASH-induced liver cirrhosis with hepatocellular carcinoma: A preliminary work on roles of exosomal miR-182, miR-301a, and miR-373[J]. Malays J Pathol, 2020, 42(3): 377-384.
    [36]
    LOU G, YANG Y, LIU F, et al. MiR-122 modification enhances the therapeutic efficacy of adipose tissue-derived mesenchymal stem cells against liver fibrosis[J]. J Cell Mol Med, 2017, 21(11): 2963-2973. DOI: 10.1111/jcmm.13208.
    [37]
    QU Y, ZHANG Q, CAI X, et al. Exosomes derived from miR-181-5p-modified adipose-derived mesenchymal stem cells prevent liver fibrosis via autophagy activation[J]. J Cell Mol Med, 2017, 21(10): 2491-2502. DOI: 10.1111/jcmm.13170.
    [38]
    CHEN L, CHEN R, VELAZQUEZ VM, et al. Fibrogenic signaling is suppressed in hepatic stellate cells through targeting of connective tissue growth factor (CCN2) by cellular or exosomal MicroRNA-199a-5p[J]. Am J Pathol, 2016, 186(11): 2921-2933. DOI: 10.1016/j.ajpath.2016.07.011.
    [39]
    CHEN L, LU FB, CHEN DZ, et al. BMSCs-derived miR-223-containing exosomes contribute to liver protection in experimental autoimmune hepatitis[J]. Mol Immunol, 2018, 93: 38-46. DOI: 10.1016/j.molimm.2017.11.008.
    [40]
    CHEN L, YAO X, YAO H, et al. Exosomal miR-103-3p from LPS-activated THP-1 macrophage contributes to the activation of hepatic stellate cells[J]. FASEB J, 2020, 34(4): 5178-5192. DOI: 10.1096/fj.201902307RRR.
    [41]
    RIMER JM, LEE J, HOLLEY CL, et al. Long-range function of secreted small nucleolar RNAs that direct 2'-O-methylation[J]. J Biol Chem, 2018, 293(34): 13284-13296. DOI: 10.1074/jbc.RA118.003410.
    [42]
    XIE Z, WU Y, LIU S, et al. LncRNA-SNHG7/miR-29b/DNMT3A axis affects activation, autophagy and proliferation of hepatic stellate cells in liver fibrosis[J]. Clin Res Hepatol Gastroenterol, 2021, 45(2): 101469. DOI: 10.1016/j.clinre.2020.05.017.
    [43]
    TANG X, XIE X, WANG X, et al. The combination of piR-823 and eukaryotic initiation factor 3 B (EIF3B) activates hepatic stellate cells via upregulating TGF-β1 in liver fibrogenesis[J]. Med Sci Monit, 2018, 24: 9151-9165. DOI: 10.12659/MSM.914222.
    [44]
    ZEUSCHNER P, LINXWEILER J, JUNKER K. Non-coding RNAs as biomarkers in liquid biopsies with a special emphasis on extracellular vesicles in urological malignancies[J]. Expert Rev Mol Diagn, 2020, 20(2): 151-167. DOI: 10.1080/14737159.2019.1665998.
    [45]
    TORIYABE N, SAKURAI Y, KATO A, et al. The delivery of small interfering RNA to hepatic stellate cells using a lipid nanoparticle composed of a vitamin A-scaffold lipid-like material[J]. J Pharm Sci, 2017, 106(8): 2046-2052. DOI: 10.1016/j.xphs.2017.04.042.
    [46]
    ZHANG Q, SHU FL, JIANG YF, et al. Influence of expression plasmid of connective tissue growth factor and tissue inhibitor of metalloproteinase-1 shRNA on hepatic precancerous fibrosis in rats[J]. Asian Pac J Cancer Prev, 2015, 16(16): 7205-7210. DOI: 10.7314/apjcp.2015.16.16.7205.
    [47]
    GE S, XIONG Y, WU X, et al. Role of growth factor receptor-bound 2 in CCl(4)-induced hepatic fibrosis[J]. Biomed Pharmacother, 2017, 92: 942-951. DOI: 10.1016/j.biopha.2017.05.142.
    [48]
    PAN Q, RAMAKRISHNAIAH V, HENRY S, et al. Hepatic cell-to-cell transmission of small silencing RNA can extend the therapeutic reach of RNA interference (RNAi)[J]. Gut, 2012, 61(9): 1330-1339. DOI: 10.1136/gutjnl-2011-300449.
    [49]
    ZHOU YP, LV XY, QU H, et al. Differential expression of circular RNAs in hepatic tissue in a model of liver fibrosis and functional analysis of their target genes[J]. Hepatol Res, 2019, 49(3): 324-334. DOI: 10.1111/hepr.13284.
    [50]
    LIU W, FENG R, LI X, et al. TGF-β-and lipopolysaccharide-induced upregulation of circular RNA PWWP2A promotes hepatic fibrosis via sponging miR-203 and miR-223[J]. Aging (Albany NY), 2019, 11(21): 9569-9580. DOI: 10.18632/aging.102405.
    [51]
    JI D, CHEN GF, WANG JC, et al. Hsa_circ_0070963 inhibits liver fibrosis via regulation of miR-223-3p and LEMD3[J]. Aging (Albany NY), 2020, 12(2): 1643-1655. DOI: 10.18632/aging.102705.
    [52]
    WANG W, DONG R, GUO Y, et al. CircMTO1 inhibits liver fibrosis via regulation of miR-17-5p and Smad7[J]. J Cell Mol Med, 2019, 23(8): 5486-5496. DOI: 10.1111/jcmm.14432.
    [53]
    JIN H, LI C, DONG P, et al. Circular RNA cMTO1 promotes PTEN expression through sponging miR-181b-5p in liver fibrosis[J]. Front Cell Dev Biol, 2020, 8: 714. DOI: 10.3389/fcell.2020.00714.
    [54]
    LI S, SONG F, LEI X, et al. hsa_circ_0004018 suppresses the progression of liver fibrosis through regulating the hsa-miR-660-3p/TEP1 axis[J]. Aging (Albany NY), 2020, 12(12): 11517-11529. DOI: 10.18632/aging.103257.
    [55]
    ZHU M, LIU X, LI W, et al. Exosomes derived from mmu_circ_0000623-modified ADSCs prevent liver fibrosis via activating autophagy[J]. Hum Exp Toxicol, 2020, 39(12): 1619-1627. DOI: 10.1177/0960327120931152.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Tables(1)

    Article Metrics

    Article views (414) PDF downloads(33) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return