中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

药对“川楝子-延胡索”治疗肝癌的网络药理学研究

章甜 贾思静 孙冬雪 龙奉玺 唐东昕 杨柱

引用本文:
Citation:

药对“川楝子-延胡索”治疗肝癌的网络药理学研究

DOI: 10.3969/j.issn.1001-5256.2021.09.026
基金项目: 

中医肿瘤学研究生工作站 (JYSZ(2014)018);

贵州省高层次创新型人才培养计划(百层次) ((2016)4032);

贵州省中医肿瘤传承与科技创新人才基地 ((2018)3);

贵州省杨柱“中医肿瘤学”研究生导师工作室 (GZS(2016)08);

贵阳市科技局贵州中医药大学第一附属医院大健康科技合作项目 ((2019)9-2);

贵州省科技厅贵州省中医肿瘤传承与科技创新人才团队 ((2020)5013);

国家自然科学基金 (81660833);

贵州中医药大学研究生教育创新计划 (YFYYJSCX2018-28)

利益冲突声明:本研究不存在研究者、伦理委员会成员、受试者监护人以及与公开研究成果有关的利益冲突。
作者贡献声明:章甜负责课题设计、拟定写作思路、撰写论文;贾思静、孙冬雪负责收集数据及资料分析;龙奉玺、杨柱负责修改论文;龙奉玺、唐东昕指导撰写文章并最后定稿。
详细信息
    通信作者:

    龙奉玺,1343750581@qq.com

  • 中图分类号: R735.7

Mechanism of "Szechwan Chinaberry Fruit-Rhizoma Corydalis" drug combination in treatment of liver cancer based on network pharmacology

Research funding: 

Postgraduate Workstation of TCM Oncology (JYSZ(2014)018);

High-level Innovative Talent Cultivation Plan of Guizhou Province (Hundred Levels) ((2016)4032);

Guizhou Provincial Talent Base for TCM Tumor Inheritance and Science and technology Innovation ((2018)3);

Yang Zhu "Traditional Chinese Medicine Oncology" Graduate Tutor Studio, Guizhou Province (GZS(2016)08);

Large health science and technology Cooperation project of the First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang Science and Technology Bureau ((2019)9-2);

Guizhou Provincial Department of Science and Technology of Traditional Chinese Medicine Tumor Inheritance and Science and Technology Innovation Talent Team ((2020)5013);

National Natural Science Foundation of China (81660833);

Graduate Education Innovation Program of Guizhou University of Traditional Chinese Medicine (YFYYJSCX2018-28)

  • 摘要:   目的  基于网络药理学方法研究药对“川楝子-延胡索”药理成分,分析该药对治疗肝癌的潜在分子机制。  方法  借助相关数据库如TCMSP、Uniprot、Genecard等分别搜集中药川楝子、延胡索的有效成分、对应作用靶点以及疾病肝癌的靶点,选取药物、疾病交集靶点。此外,通过String、Metascape数据库筛选药物作用核心靶点并完成GO功能和KEGG通路富集分析。  结果  中药川楝子、延胡索的有效成分分别为6、49个,共同成分1个;作用靶点分别为181、1097个,共同靶点143个;药对与肝癌的交集靶点162个,主要涉及的基因为IL6、TP53、VEGFA、TNF、CASP3;KEGG分析主要涉及通路为癌症通路、糖尿病并发症的AGE-RAGE信号通路、TNF信号通路、NF-κB信号通路、甲状腺激素信号通路等。  结论  药对“川楝子-延胡索”中含有多种不同成分,该成分可通过作用于相关基因及信号通路发挥治疗肝癌的作用。

     

  • 图  1  药对“川楝子-延胡索”治疗肝癌的靶点基因的GO功能分析(含BP、MF、CC)

    图  2  药对“川楝子-延胡索”治疗肝癌的靶点基因的KEGG信号通路分析

    表  1  药对“川楝子-延胡索”中中药活性成分详情

    中药 简称 MOL ID 分子名称 OB(%) DL(%)
    川楝子(简称:CLZ) CLZ1 MOL001494 Mandenol 42.00 0.19
    CLZ2 MOL001495 Ethyl linolenate 46.10 0.20
    CLZ3 MOL002045 Stigmasterol 43.41 0.76
    CLZ4 MOL002056 (E)-3-[(2S, 3R)-2-(4-hydroxy-3-methoxy-phenyl)-7-methoxy-3-methylol-2, 3-dihydrobenzofuran-5-yl]acrolein 54.74 0.40
    CLZ5 MOL002058 Medioresil 57.20 0.62
    延胡索(简称:YHS) YHS1 MOL001454 Berberine 36.86 0.78
    YHS2 MOL001458 Coptisine 30.67 0.86
    YHS3 MOL001460 Cryptopin 78.74 0.72
    YHS4 MOL001461 Dihydrochelerythrine 32.73 0.81
    YHS5 MOL001463 Dihydrosanguinarine 59.31 0.86
    YHS6 MOL001474 Sanguinarine 37.81 0.86
    YHS7 MOL000217 (S)-Scoulerine 32.28 0.54
    YHS8 MOL002670 Cavidine 35.64 0.81
    YHS9 MOL002903 (R)-Canadine 55.37 0.77
    YHS10 MOL000359 Sitosterol 36.91 0.75
    YHS11 MOL004071 Hyndarin 73.94 0.64
    YHS12 MOL004190 (-)-alpha-N-methylcanadine 45.06 0.80
    YHS13 MOL004191 Capaurine 62.91 0.69
    YHS14 MOL004193 Clarkeanidine 86.65 0.54
    YHS15 MOL004195 Corydaline 65.84 0.68
    YHS16 MOL004196 Corydalmine 52.50 0.59
    YHS17 MOL004197 Corydine 37.16 0.55
    YHS18 MOL004198 Corynoline 46.06 0.85
    YHS19 MOL004199 Corynoloxine 38.12 0.60
    YHS20 MOL004200 Methyl-[2-(3, 4, 6, 7-tetramethoxy-1-phenanthryl)ethyl]amine 61.15 0.44
    YHS21 MOL004202 Dehydrocavidine 38.99 0.81
    YHS22 MOL004203 Dehydrocorybulbine 46.97 0.63
    YHS23 MOL004204 Dehydrocorydaline 41.98 0.68
    YHS24 MOL004205 Dehydrocorydalmine 43.90 0.59
    YHS25 MOL004208 Demethylcorydalmatine 38.99 0.54
    YHS26 MOL004209 13-methyldehydrocorydalmine 35.94 0.63
    YHS27 MOL004210 (1S, 8′R)-6, 7-dimethoxy-2-methylspiro[3, 4-dihydroisoquinoline-1, 7′-6, 8-dihydrocyclopenta [g][1, 3]benzodioxole]-8′-ol 43.95 0.72
    YHS28 MOL004763 Izoteolin 39.53 0.51
    YHS29 MOL004214 Isocorybulbine 40.18 0.66
    YHS30 MOL004215 leonticine 45.79 0.26
    YHS31 MOL004216 13-methylpalmatrubine 40.97 0.63
    YHS32 MOL004220 N-methyllaurotetanine 41.62 0.56
    YHS33 MOL004221 Norglaucing 30.35 0.56
    YHS34 MOL004224 Pontevedrine 30.28 0.71
    YHS35 MOL004225 Pseudocoptisine 38.97 0.86
    YHS36 MOL004226 Pseudoprotopine 53.75 0.83
    YHS37 MOL004228 Saulatine 42.74 0.79
    YHS38 MOL004230 Stylopine 48.25 0.85
    YHS39 MOL004231 Tetrahydrocorysamine 34.17 0.86
    YHS40 MOL004232 Tetrahydroprotopapaverine 57.28 0.33
    YHS41 MOL004233 Thaliporphine 31.87 0.56
    YHS42 MOL004234 2, 3, 9, 10-tetramethoxy-13-methyl-5, 6- dihydroisoquinolino[2, 1-b]isoquinolin-8-one 76.77 0.73
    YHS43 MOL000449 Stigmasterol 43.83 0.76
    YHS44 MOL000785 Palmatine 64.60 0.65
    YHS45 MOL000787 Fumarine 59.26 0.83
    YHS46 MOL000790 Isocorypalmine 35.77 0.59
    YHS47 MOL000791 Bicuculline 69.67 0.88
    YHS48 MOL000793 Bulbocapnine 47.54 0.69
    共同成分 A1 MOL000098 Quercetin 46.43 0.28
    注:简称用于Cytocape软件制图。
    下载: 导出CSV
  • [1] ZHENG RS, ZUO TT, ZENG HM, et al. Mortality and survival analysis of liver cancer in China[J]. Chin J Oncol, 2015, 37(9): 697-702. DOI: 10.3760/cma. j.issn. 0253-3766.2015.09.014.

    郑荣寿, 左婷婷, 曾红梅, 等. 中国肝癌死亡状况与生存分析[J]. 中华肿瘤杂志, 2015, 37(9): 697-702. DOI: 10.3760/cma.j.issn.0253-3766.2015.09.014.
    [2] TANG DX. Differentiation and clinical application of Liu Shangyi's common drugs[M]. Beijing: Chinese Science Publishing, 2015: 94-95.

    唐东昕. 刘尚义常用药对辨析与临床应用[M]. 北京: 科学出版社, 2015: 94-95.
    [3] ZHENG BB, DOU ZY. Antalgic and anti-inflammatory action of compatibility of different processed products of corydalis tuber and fructus meliae toosendan in Jinlingzi powder[J]. J Tianjin Univ Tradit Chin Med, 2011, 30(4): 225-228. https://www.cnki.com.cn/Article/CJFDTOTAL-TZYY201104012.htm

    郑蓓蓓, 窦志英. 对金铃子散中延胡索和川楝子不同炮制品之间配伍后镇痛抗炎作用研究[J]. 天津中医药大学学报, 2011, 30(4): 225-228. https://www.cnki.com.cn/Article/CJFDTOTAL-TZYY201104012.htm
    [4] LI HB, MA SJ, SHI DF. Research progress on chemical constituents, pharmacological action and toxicity of Melia toosendan[J]. Chin Tradit Herb Drug, 2020, 51(15): 4059-4074. DOI: 10.7501/j.issn.0253-2670.2020.15.027.

    李海波, 马森菊, 石丹枫. 川楝子的化学成分、药理作用及其毒性研究进展[J]. 中草药, 2020, 51(15): 4059-4074. DOI: 10.7501/j.issn.0253-2670.2020.15.027.
    [5] FENG ZL, ZHAO ZD, LIU JX. Research progress on chemical components and pharmacological effects of corydalis yanhusuo[J]. Nat Prod Res Dev, 2018, 30(11): 155-163. DOI: 10.16333/j.1001-6880.2018.11.024.

    冯自立, 赵正栋, 刘建欣. 延胡索化学成分及药理活性研究进展[J]. 天然产物研究与开发, 2018, 30(11): 155-163. DOI: 10.16333/j.1001-6880.2018.11.024.
    [6] RAN Q, LOU GH, ZENG HR, et al. Study on mechanism of reducing excess fire of liver and gallbladder of bile processed coptidis rhizoma based on UPLC-Q-Orbitrap HRMS and network pharmacology[J]. Chin J Exp Med Formul, 2020, 26(13): 181-189. DOI: 10.13422/j.cnki.syfjx.20201057.

    冉倩, 楼冠华, 曾海蓉, 等. 基于UPLC-Q-Orbitrap HRMS和网络药理学分析胆黄连的泻肝胆实火机制[J]. 中国实验方剂学杂志, 2020, 26(13): 181-189. DOI: 10.13422/j.cnki.syfjx.20201057.
    [7] YUAN LL, WANG Q. Mechanism of Zexie Decoction in the treatment of glioma cerebral edema based on network pharmacology[J]. J Changchun Univ Chin Med, 2019, 35(5): 912-915. DOI: 10.13463/j.cnki.cczyy.2019.05.028.

    袁莉莉, 王倩. 基于网络药理学研究泽泻汤治疗脑水肿的作用机制[J]. 长春中医药大学学报, 2019, 35(5): 912-915. DOI: 10.13463/j.cnki.cczyy.2019.05.028.
    [8] LI XB, JIANG GY, DONG H. Network pharmacology study of tetramethylpyrazine on the treatment of acute myeloid leukemia[J]. J Changchun Univ Chin Med, 2020, 36(1): 67-70. DOI: 10.13463/j.cnki.cczyy.2020.01.021.

    李续博, 姜广宇, 董航. 川芎嗪对急性髓系白血病治疗作用的网络药理学研究[J]. 长春中医药大学学报, 2020, 36(1): 67-70. DOI: 10.13463/j.cnki.cczyy.2020.01.021.
    [9] GONG XJ, NI YN. Use of network pharmacology to determine the active ingredients of Coicis Semen on liver cancer[J]. Chin J New Drugs, 2020, 29(16): 1902-1910. DOI: 10.3969/j.issn.1003-3734.2020.16.018.

    巩晓杰, 倪颖男. 利用网络药理学确定薏苡仁作用肝癌的有效活性成分[J]. 中国新药杂志, 2020, 29(16): 1902-1910. DOI: 10.3969/j.issn.1003-3734.2020.16.018.
    [10] OUYANG SL, YANG Z, LONG FX, et al. Activity components and mechanism of rabdosia rubescens for anti-tumor based on network pharmacology[J]. Chin Arch Tradit Chin Med, 2021, 39(4): 192-195, 304-305. DOI: 10.13193/j.issn. 1673-7717.2021.04.049.

    欧阳思露, 杨柱, 龙奉玺, 等. 基于网络药理学探讨冬凌草抗癌的活性成分及作用机制[J]. 中华中医药学刊, 2021, 39(4): 192-195, 304-305. DOI: 10.13193/j.issn. 1673-7717.2021.04.049.
    [11] LI J, MO JH, XU HB, et al. Mechanism of action of Sini powder in treatment of liver cancer based on network pharmacology and molecular docking[J]. J Clin Hepatol, 2020, 36(9): 1998-2004. DOI: 10.3969/j.issn.1001-5256.2020.09.018.

    李菁, 莫嘉浩, 许洪彬, 等. 基于网络药理学与分子对接研究四逆散治疗肝癌的作用机制[J]. 临床肝胆病杂志, 2020, 36(9): 1998-2004. DOI: 10.3969/j.issn.1001-5256.2020.09.018.
    [12] CAO ZC, LIU JH. Overview of Chinese and Western medicine in cancer[M]. Shanghai: Shanghai Scientific & Technical Publishers, 2009: 247.

    曹志成, 刘洁华. 癌中西医面面观[M]. 上海: 上海科学技术出版社, 2009: 247.
    [13] DAI Y, AI TB. Semi-bionic extracrion and anticancer activity of jinlingzi san[J]. J Jinggangshan University (Natural Sciences Edition), 2018, 39(3): 98-101. DOI: 10.3969/j.issn.1674-8085.2018.03.020.

    戴一, 艾甜碧. 金铃子散的半仿生提取及抗癌活性研究[J]. 井冈山大学学报(自然科学版), 2018, 39(3): 98-101. DOI: 10.3969/j.issn.1674-8085.2018.03.020.
    [14] DAI Y, AI TB. Advances on the antitumor active compositions of fructus toosendan and rhizoma corydalis[J]. J Shantou University (Natural Science), 2018, 33(1): 57-62. DOI: 10.3969/j.issn.1001-4217.2018.01.007.

    戴一, 艾甜碧. 川楝子与延胡索抗癌活性成分研究进展[J]. 汕头大学学报(自然科学版), 2018, 33(1): 57-62. DOI: 10.3969/j.issn.1001-4217.2018.01.007.
    [15] TANG XL, YANG XY, KIM YC, et al. Protective effects of the ethanolic extract of melia toosendan fruit againstcolon cancer[J]. Indian J Biochem Biophys, 2012, 49(3): 173-181. DOI: 10.1684/ecn.2012.0308.
    [16] MOU WS. Inhibitory effect of corydalis powder on H22 hepatic carcinoma[J]. Medical Information, 2010, 23(5): 1241- 1242. DOI: 10.3969/j.issn.1006-1959.2010.05.234

    牟唯省. 延胡索粉末对小鼠肝癌H22的抑制作用[J]. 医学信息, 2010, 23(5): 1241-1242. DOI: 10.3969/j.issn.1006-1959.2010.05.234
    [17] REN KW, LI YH, WU G, et al. Quercetin nanoparticles display antitumor activity via proliferation inhibition and apoptosis induction in liver cancer cells[J]. Int J Oncol, 2017, 50(4): 1299-1311. DOI: 10.3892/ijo.2017.3886.
    [18] HISAKA T, SAKAI H, SATO T, et al. Quercetin suppresses proliferation of liver cancer cell lines in vitro[J]. Anticancer Res, 2020, 40(8): 4695-4700. DOI: 10.21873/anticanres.14469.
    [19] SUN J, ZHAO DG, WANG MY, et al. Influence of quercetin on PI3K /AKT signal pathway of SMMC-7721 hepatic cancer cells[J]. Chin J Exp Med Formul, 2012, 18(18): 223-226. DOI: 10.13422/j.cnki.syfjx.2012.18.073.

    孙佳, 赵冬耕, 王明艳, 等. 槲皮素对SMMC-7721肝癌细胞PI3K/AKT信号通路影响的探讨[J]. 中国实验方剂学杂志, 2012, 18(18): 223-226. DOI: 10.13422/j.cnki.syfjx.2012.18.073.
    [20] BRITO AF, RIBEIRO M, ABRANTES AM, et al. New approach for treatment of primary liver tumors: The role of quercetin[J]. Nutre Cancer, 2016, 68(2): 250-266. DOI: 10.1080/01635581.2016.1145245.
    [21] CHENG XX, WANG DM, YANG DP. Advances in studies on biological activity and structure-activity relationships of isoquinoline alkaloids[J]. Chin Tradit Herb Drug, 2006, 37(12): 1900-1904. DOI: 10.3321/j.issn:0253-2670.2006.12.052.

    程轩轩, 王冬梅, 杨得坡. 异喹啉类生物碱的生物活性和构效关系研究进展[J]. 中草药, 2006, 37(12): 1900-1904. DOI: 10.3321/j.issn:0253-2670.2006.12.052.
    [22] CAO P, ZHANG ZW, LI Y, et al. Progress of antibacterial activity and antibacterial mechanism of isoquinoline alkaloids[J]. China J Chin Mater Med, 2016, 41(14): 2600-2606. DOI: 10.4268/cjcmm20161406.

    曹鹏, 张紫薇, 李滢, 等. 异喹啉类生物碱抑菌活性及抑菌机制研究进展[J]. 中国中药杂志, 2016, 41(14): 2600-2606. DOI: 10.4268/cjcmm20161406.
    [23] ZHAO N, GAO F, LIU B, et al. Research advance on the pharmacological effects of benzyltetrahydroisoquinolinesalkaloids[J]. J Pharm Pract, 2015, 33(4): 313-315. DOI: 10.3969/j.issn.1006-0111.2015.04.006.

    赵娜, 高峰, 刘彬, 等. 苄基四氢异喹啉类生物碱的药理作用及其研究进展[J]. 药学实践杂志, 2015, 33(4): 313-315. DOI: 10.3969/j.issn.1006-0111.2015.04.006.
    [24] LIU C, YANG S, WANG K, et al. Alkaloids from traditional Chinese medicine against hepatocellular carcinoma[J]. Biomed Pharmacother, 2019, 120: 109543. DOI: 10.1016/j.biopha.2019.109543.
    [25] GUO G, ZHOU J, YANG X, et al. Role of microRNAs induced by Chinese herbal medicines against hepatocellular carcinoma: A brief review[J]. Integr Cancer Ther, 2018, 17(4): 1059-1067. DOI: 10.1177/1534735418805564.
    [26] LIN JG, YAO KW, WANG QQ, et al. Mechanism of Xuefu Zhuyu Decoction in treatment of myocardial infarction based on network pharmacology and molecular docking[J]. China J Chin Mater Med, 2021, 46(4): 885-893. DOI: 10.19540/j.cnki.cjcmm.20201106.402.

    林建国, 姚魁武, 王擎擎, 等. 基于网络药理学和分子对接探讨血府逐瘀汤治疗心肌梗死的作用机制[J]. 中国中药杂志, 2021, 46(4): 885-893. DOI: 10.19540/j.cnki.cjcmm.20201106.402.
    [27] CRON L, ALLEN T, FEBBRAIO MA. The role of gp130 receptor cytokines in the regulation of metabolic homeostasis[J]. J Exp Biol, 2016, 219(Pt 2): 259-265. DOI: 10.1242/jeb.129213.
    [28] CHANG Q, DALY L, BROMBERG J. The IL-6 feed-forward loop: A driver of tumorigenesis[J]. Semin Immunol, 2014, 26(1): 48-53. DOI: 10.1016/j.smim.2014.01.007.
    [29] WANG L, ZHAO YH, LIU Y, et al. IFN-γ and TNF-α synergistically induce mesenchymal stem cell impairment and tumorigenesis via NF-κB signaling[J]. Stem Cells, 2013, 31(7): 1383-1395. DOI: 10.1002/stem.1388.
    [30] LEBREC H, PONCE R, PRESTON BD, et al. Tumor necrosis factor, tumor necrosis factor inhibition, and cancer risk[J]. Curr Med Res Opin, 2015, 31(3): 557-574. DOI: 10.1185/03007995.2015.1011778.
    [31] SAVAS P, HUGHES B, SOLOMON B. Targeted therapy in lung cancer: IPASS and beyond, keeping abreast of the explosion of targeted therapies for lung cancer[J]. J Thorac Dis, 2013, 5(5): 579-592. DOI: 10.3978/j.issn.2072-1439.2013.08.52.
    [32] WANG AH, ZHAO JM, DU J, et al. Inhibitory effect and mechanisms of ginsenoside Rg3 combined with cisplatin on the metastasis and microangiogenesis of hepatocellular carcinoma in mice[J]. Chin J Comp Med, 2019, 29(12): 83-87. DOI: 10.3969/j.issn.1671-7856.2019.12.012.

    王爱红, 赵菊梅, 杜娟, 等. 人参皂苷Rg3联合顺铂抑制小鼠肝细胞癌转移及微血管生成的机制研究[J]. 中国比较医学杂志, 2019, 29(12): 83-87. DOI: 10.3969/j.issn.1671-7856.2019.12.012.
    [33] WANG YW, LIN KT, CHEN SC, et al. Overexpressed-eIF3I interacted and activated oncogenic Akt1 is a theranostic target in human hepatocellular carcinoma[J]. Hepatology, 2013, 58(1): 239-250. DOI: 10.1002/hep.26352.
    [34] RAHMANI F, ZIAEEMEHR A, SHAHIDSALES S, et al. Role of regulatory miRNAs of the PI3K/AKT/mTOR signaling in the pathogenesis of hepatocellular carcinoma[J]. J Cell Physiol, 2020, 235(5): 4146-4152. DOI: 10.1002/jcp.29333.
    [35] ZHANG J, JIANG TY, WANG SL. Application of prodrug design in improving the properties of anticancer drugs[J]. World Clinical Drugs, 2007, 28(1): 47-51. DOI: 10.3969/j.issn.1672-9188.2007.01.016.

    张婧, 姜同英, 王思玲. 前药设计在改善抗癌药物特性中的应用[J]. 世界临床药物, 2007, 28(1): 47-51. DOI: 10.3969/j.issn.1672-9188.2007.01.016.
    [36] WANG BW. Structural based drug design for small molecular stabilizers of p53 mutant Y220C[J/CD]. J Clin Med Literature (Electronic Edition), 2017, 4(103): 20367-20369. DOI: 10.16281/j.cnki.jocml.2017.a3.130.

    汪博闻. 基于结构的p53突变体Y220C小分子稳定剂的药物设计[J/CD]. 临床医药文献电子杂志, 2017, 4(103): 20367-20369. DOI: 10.16281/j.cnki.jocml.2017.a3.130.
    [37] CANDEIAS MM, HAGIWARA M, MATSUDA M. Cancer-specific mutations in p53 induce the translation of Δ160p53 promoting tumorigenesis[J]. Embo Reports, 2016, 17(11): 1542-1551. DOI: 10.15252/embr.201541956.
    [38] EARNSHAW WC, MARTINS LM, KAUFMANN SH. Mammalian caspases: Structure, activation, substrates, and functions during apoptosis[J]. Annu Rev Biochem, 1999, 68(1): 383-424. DOI: 10.1146/annurev.biochem.68.1.383.
    [39] FREIEDLANDER RM. Apoptosis and caspases in neurodegenerative diseases[J]. N Engl J Med, 2003, 348(14): 1365-1375. DOI: 10.1056/NEJMra022366.
    [40] TAMM I, WANG Y, SAUSVILLE E, et al. IAP-family protein survivin inhibits caspase activity and apoptosis induced by Fas (CD95), Bax, caspases, and anticancer drugs[J]. Cancer Res, 1998, 58(23): 5315-5320. http://cancerres.aacrjournals.org/cgi/reprint/58/23/5315.pdf
    [41] LAKHANISA, MASUD A, KUIDA K, et al. Caspases 3 and 7: Key mediators of mitochondrial events of apoptosis[J]. Science, 2006, 311(5762): 847-851. DOI: 10.1126/science.1115035.
    [42] LV SX, QIAO X. Isovitexin (IV) induces apoptosis and autophagy in liver cancer cells through endoplasmic reticulum stress[J]. Biochem Biophys Res Commun, 2018, 496(4): 1047-1054. DOI: 10.1016/j.bbrc.2018.01.111.
    [43] HOU Y, ZHU B, LIU J. Respiratory syncytial virus induces the apoptosis of A549 associated with NF-κB signaling pathway activation[J]. Basic Clin Med, 2013, 10(33): 1288-1292. DOI: 10.16352/j.issn.1001-6325.2013.10.032.

    侯燕, 朱斌, 刘坚. 呼吸道合胞病毒诱导a549细胞凋亡与NF-κB信号通路有关[J]. 基础医学与临床, 2013, 10(33): 1288-1292. DOI: 10.16352/j.issn.1001-6325.2013.10.032.
    [44] NABEKURA T, HIROI T, KAWASAKI T, et al. Effects of natural nuclear factor-kappa B inhibitors on anticancer drug efflux transporterhuman P-glycoprotein[J]. Biomed Pharmacother, 2015, 70: 140-145. DOI: 10.1016/j.biopha.2015.01.007.
    [45] YANG H, CHEN D, CUI QC, et al. Celastrol, a triterpene extracted from the Chinese "Th under of God Vine, " is a potent proteasome inhibitor and suppresses human prostate cancer growth in nude mice[J]. Cancer Res, 2006, 66(9): 4758-4765. DOI: 10.1158/0008-5472.CAN-05-4529.
    [46] WU LQ, GE HP, LUO ZQ, et al. Expression of NF-κB and P-gp protein in hepatocellular carcinoma[J]. Chin J Hepatobiliary Surg, 2007, 13(5): 314-316. DOI: 10.3760/cma.j.issn.1007-8118.2007.05.011.

    邬林泉, 戈华平, 罗志强, 等. NF-κB与P-gp在肝细胞肝癌组织中的表达[J]. 中华肝胆外科杂志, 2007, 13(5): 314-316. DOI: 10.3760/cma.j.issn.1007-8118.2007.05.011.
    [47] ZHANG KJ, LI DC, GAO YM, et al. Relation of expression of NF-κB, MMP-9 to HCC metastasis[J]. Chin J Hepatobiliary Surg, 2006, 12(10): 691-694. DOI: 10.3760/cma.j.issn.1007-8118.2006.10.013.

    张克君, 李德春, 高焱明, 等. Nf-κb、Mmp-9与肝细胞肝癌浸润转移的实验研究[J]. 中华肝胆外科杂志, 2006, 12(10): 691-694. DOI: 10.3760/cma.j.issn.1007-8118.2006.10.013.
    [48] CHATURVEDI MM, SUNG B, YADAV VR, et al. NF-κB addiction and its role in cancer: "one size does not fit all"[J]. Oncogene, 2011, 30(14): 1615-1630. DOI: 10.1038/onc.2010.566.
    [49] TAKADA Y, KOBAYASHI Y, AGGARWAL BB. Evodiamine abolishes constitutive and inducible NF-κB activationby inhibiting IκBα kinase activation, thereby suppressing NF-κB-regulated antiapoptotic and metastatic gene expression, upregulating apoptosis, and inhibiting invasion[J]. J Biol Chem, 2005, 290(17): 17203-17212. DOI: 10.1074/jbc.m500077200.
    [50] GREENSPAN EJ, MADIGAN JP, BOARDMAN LA, et al. Ibuprofen inhibits activation of nuclear β-catenin in human colon adenomas and induces the phosphorylation of GSK-3β[J]. Cancer Prev Res, 2011, 4(1): 161-171. DOI: 10.1158/1940-6207.CAPR-10-0021.
    [51] ZHANG T, GENG Z, LIU FC, et al. Effect of human umbilical cord mesenchymal stem cells on AGEs/RAGE/NF-κB signaling pathway in skin tissue of type 1 diabetic rat[J]. Chin J Diabetes, 2019, 27(3): 224-228. DOI: 10.3969/j.issn.1006-6187.2019.03.012.

    张涛, 耿壮, 刘方超, 等. 人脐带间充质干细胞对1型糖尿病小鼠皮肤组织AGEs/RAGE/ NF-κB信号通路影响的研究[J]. 中国糖尿病杂志, 2019, 27(3): 224-228. DOI: 10.3969/j.issn.1006-6187.2019.03.012.
    [52] ZHU Q, LU GY, GUI FF, et al. Effects of TNF-α on activation of NF-κB signaling pathway in hepatocellular carcinoma in vitro and its clinical significance[J]. Hebei Med J, 2018, 40(24): 3700-3703. DOI: 10.3969/j.issn.1002-7386.2018.24.004.

    朱倩, 卢贵余, 桂芬芳, 等. TNF-α对肝癌细胞NF-κB信号通路活化的影响及临床意义[J]. 河北医药, 2018, 40(24): 3700-3703. DOI: 10.3969/j.issn.1002-7386.2018.24.004.
    [53] YU HB, ZHANG HF, ZHANG X, et al. Resveratrol inhibits VEGF expression of human hepatocellular carcinoma cells through a NF-kappa B-mediated mechanism[J]. Hepatogastroenterology, 2010, 57(102/103): 1241-1246. http://www.ncbi.nlm.nih.gov/pubmed/21410066
    [54] LI JB, KE SD, HU SM. Effect of berberine on TNF-α-induced VEGF expression via NF-κB signaling pathway[J]. Acta Med Univ Sci Technol Huazhong, 2014, 43(4): 386-390. DOI: 10.3870/j.issn.1672-0741.2014.04.004.

    李井彬, 柯善栋, 胡少明. 黄连素通过NF-κB信号通路对TNF-α诱导的VEGF表达的影响[J]. 华中科技大学学报(医学版), 2014, 43(4): 386-390. DOI: 10.3870/j.issn.1672-0741.2014.04.004
    [55] GAI JS, SUN YF, ZHONG XT, et al. Multilevel Analysis on the mechanism of prunella pruneae in the treatment of optic neuropathy based on the network of "component -target-pathway" network[J]. J Chin Med Materls, 2020, 43(7): 1705-1711. DOI: 10.13863/j.issn1001-4454.2020.07.032.

    高建胜, 孙元芳, 钟小天, 等. 基于"成分-靶点-通路"网络多层次分析夏枯草治疗视神经病变的作用机制[J]. 中药材, 2020, 43(7): 1705-1711. DOI: 10.13863/j.issn1001-4454.2020.07.032.
  • 加载中
图(2) / 表(1)
计量
  • 文章访问数:  853
  • HTML全文浏览量:  157
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-06
  • 录用日期:  2021-03-09
  • 出版日期:  2021-09-20
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回