中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

核受体在原发性胆汁性胆管炎发生发展中的作用

余海燕 唐映梅

引用本文:
Citation:

核受体在原发性胆汁性胆管炎发生发展中的作用

DOI: 10.3969/j.issn.1001-5256.2020.05.049
基金项目: 

国家自然科学基金项目(81660102); 昆明医科大学研究生创新基金项目(2019S039); 云南省自然科学基金项目(2018FE001); 云南省卫生科技计划项目(2017NS280); 

详细信息
  • 中图分类号: R575.7

Role of nuclear receptor in the development and progression of primary biliary cholangitis

Research funding: 

 

  • 摘要:

    原发性胆汁性胆管炎(PBC)是一种原因不明的慢性进行性肝内胆汁淤积性自身免疫性肝病。目前PBC的病因和发病机制尚不完全清楚。核受体是配体依赖性转录因子超家族,通过信号分子与转录应答间构建联系,调控细胞的生长和分化。人类中核受体家族包含48个成员,如过氧化物酶体增殖物激活受体、孕烷X受体、组成型雄烷受体、肝X受体、法尼醇X受体、维生素D受体、糖皮质激素受体等,受到广泛关注。这些核受体在转录水平调节胆汁酸代谢的关键酶和转运体基因,从而调节体内胆汁酸水平及参与炎症反应。而胆汁酸代谢紊乱和炎症的持续可能是PBC发生发展的关键因素。就核受体在PBC发生发展中的研究进展作一综述,为PBC的发病机制和寻找新的治疗靶点提供理论基础。

     

  • [1] WANG L, GERSHWIN ME, WANG FS. Primary biliary cholangitis in China[J]. Curr Opin Gastroenterol, 2016, 32(3):195-203.
    [2] TANG YM, WANG JP, BAO WM, et al. Urine and serum metabolomic profiling reveals that bile acids and carnitine may be potential biomarkers of primary biliary cirrhosis[J]. Int J Mol Med,2015, 36(2):377-385.
    [3] KRENKEL O, TACKE F. Macrophages in nonalcoholic fatty liver disease:A role model of pathogenic immunometabolism[J]. Semin Liver Dis, 2017, 37(3):189-197.
    [4] RAMÓN-VZQUEZ A, de la ROSA JV, TABRAUE C, et al.Common and differential transcriptional actions of nuclear receptors liver X receptorsαandβin macrophages[J]. Mol Cell Biol, 2019, 39(5):e00376-18.
    [5] ENDO-UMEDA K, NAKASHIMA H, KOMINE-AIZAWA S, et al. Liver X receptors regulate hepatic F4/80+CD11b+Kupffer cells/macrophages and innate immune responses in mice[J].Sci Rep, 2018, 8(1):9281.
    [6] MIAO CM, HE K, LI PZ, et al. LXRαrepresses LPS-induced inflammatory responses by competing with IRF3 for GRIP1 in Kupffer cells[J]. Int Immunopharmacol, 2016, 35:272-279.
    [7] HIGHAM A, LEA S, PLUMB J, et al. The role of the liver X receptor in chronic obstructive pulmonary disease[J]. Respir Res, 2013, 14:106.
    [8] ZHAO Q, ZHOU D, YOU H, et al. IFN-γaggravates neointimal hyperplasia by inducing endoplasmic reticulum stress and apoptosis in macrophages by promoting ubiquitin-dependent liver X receptor-αdegradation[J]. FASEB J, 2017, 31(12):5321-5331.
    [9] DAI B, LEI C, LIN R, et al. Activation of liver X receptorαprotects amyloidβ1-40 induced inflammatory and senescent responses in human retinal pigment epithelial cells[J]. Inflamm Res, 2017, 66(6):523-534.
    [10] BI X, SONG J, GAO J, et al. Activation of liver X receptor attenuates lysophosphatidylcholine-induced IL-8 expression in endothelial cells via the NF-κB pathway and SUMOylation[J]. J Cell Mol Med, 2016, 20(12):2249-2258.
    [11] CANAVAN M, MCCARTHY C, LARBI NB, et al. Activation of liver X receptor suppresses the production of the IL-12 family of cytokines by blocking nuclear translocation of NF-κBp50[J]. Innate Immun, 2014, 20(7):675-687.
    [12] POURCET B, GAGE MC, LEÓN TE,et al. The nuclear receptor LXR modulates interleukin-18 levels in macrophages through multiple mechanisms[J]. Sci Rep, 2016, 6:25481.
    [13] XIAO J, CHEN Q, TANG D, et al. Activation of liver X receptors promotes inflammatory cytokine mRNA degradation by upregulation of tristetraprolin[J]. Acta Biochim Biophys Sin(Shanghai), 2017, 49(3):277-283.
    [14] LEI C, LIN R, WANG J, et al. Amelioration of amyloidβ-induced retinal inflammatory responses by a LXR agonist TO901317 is associated with inhibition of the NF-κB signaling and NLRP3 inflammasome[J]. Neuroscience, 2017, 360:48-60.
    [15] YU SX, CHEN W, HU XZ, et al. Liver X receptors agonists suppress NLRP3 inflammasome activation[J]. Cytokine,2017, 91:30-37.
    [16] ENJOJI M, YADA R, FUJINO T, et al. The state of cholesterol metabolism in the liver of patients with primary biliary cirrhosis:the role of MDR3 expression[J]. Hepatol Int, 2009, 3(3):490-496.
    [17] HEO W, LEE ES, CHO HT, et al. Lactobacillus plantarum LRCC5273 isolated from Kimchi ameliorates diet-induced hypercholesterolemia in C57BL/6 mice[J]. Biosci Biotechnol Biochem, 2018,82(11):1964-1972.
    [18] DU J, XIANG X, LI Y, et al. Molecular cloning and characterization of farnesoid X receptor from large yellow croaker(Larimichthys crocea)and the effect of dietary CDCA on the expression of inflammatory genes in intestine and spleen[J]. Comp Biochem Physiol B Biochem Mol Biol, 2018, 216:10-17.
    [19] LI G, KONG B, ZHU Y, et al. Small heterodimer partner overexpression partially protects against liver tumor development in farnesoid X receptor knockout mice[J]. Toxicol Appl Pharmacol, 2013, 272(2):299-305.
    [20] HAO H, CAO L, JIANG C, et al. Farnesoid X receptor regulation of the NLRP3 inflammasome underlies cholestasis-associated sepsis[J]. Cell Metab, 2017, 25(4):856-867. e5.
    [21] ZHANG Y, JACKSON JP, ST CLAIRE RL 3rd, et al. Obeticholic acid, a selective farnesoid X receptor agonist, regulates bile acid homeostasis in sandwich-cultured human hepatocytes[J]. Pharmacol Res Perspect, 2017, 5(4):e00329.
    [22] WU SY, CUI SC, WANG L, et al. 18β-Glycyrrhetinic acid protects against alpha-naphthylisothiocyanate-induced cholestasis through activation of the Sirt1/FXR signaling pathway[J]. Acta Pharmacol Sin, 2018, 39(12):1865-1873.
    [23] KIM KH, CHOI JM, LI F, et al. Xenobiotic nuclear receptor signaling determines molecular pathogenesis of progressive familial intrahepatic cholestasis[J]. Endocrinology, 2018, 159(6):2435-2446.
    [24] ZHANG T, LIU Y, ZENG R, et al. Association of donor small ubiquitin-like modifier 4 rs237025 genetic variant with tacrolimus elimination in the early period after liver transplantation[J]. Liver Int, 2018, 38(4):724-732.
    [25] KITTAYARUKSAKUL S, ZHAO W, XU M, et al. Identification of three novel natural product compounds that activate PXR and CAR and inhibit inflammation[J]. Pharm Res, 2013, 30(9):2199-2208.
    [26] SHAH P, GUO T, MOORE DD, et al. Role of constitutive androstane receptor in Toll-like receptor-mediated regulation of gene expression of hepatic drug-metabolizing enzymes and transporters[J]. Drug Metab Dispos, 2014, 42(1):172-181.
    [27] TANNER N, KUBIK L, LUCKERT C, et al. Regulation of drug metabolism by the interplay of inflammatory signaling, steatosis, and xeno-sensing receptors in HepaRG cells[J]. Drug Meta Dispos, 2018, 46(4):326-335.
    [28] LICKTEIG AJ, ZHANG Y, KLAASSEN CD, et al. Effects of absence of constitutive androstane receptor(CAR)on bile acid homeostasis in male and female mice[J]. Toxicol Sci, 2019,21:1-14.
    [29] WANG YG, ZHOU JM, MA ZC, et al. Pregnane X receptor mediated-transcription regulation of CYP3A by glycyrrhizin:A possible mechanism for its hepatoprotective property against lithocholic acid-induced injury[J]. Chem Biol Interact, 2012, 200(1):11-20.
    [30] FUJIWARA R, CHEN S, KARIN M, et al. Reduced expression of UGT1A1 in intestines of humanized UGT1 mice via inactivation of NF-κB leads to hyperbilirubinemia[J]. Gastroenterology, 2012, 142(1):109-118. e2.
    [31] HARADA K, ISSE K, KAMIHIRA T, et al. Th1 cytokine-induced downregulation of PPARgamma in human biliary cells relates to cholangitis in primary biliary cirrhosis[J]. Hepatology, 2005, 41(6):1329-1338.
    [32] DAI M, HUA H, LIN H, et al. Targeted metabolomics reveals a protective role for basal PPARαin cholestasis induced byα-naphthylisothiocyanate[J]. J Proteome Res, 2018, 17(4):1500-1508.
    [33] ZHANG Y, ZHANG Y, KLAASSEN CD, et al. Alteration of bile acid and cholesterol biosynthesis and transport by perfluorononanoic acid(PFNA)in mice[J]. Toxicol Sci, 2018, 162(1):225-233.
    [34] YAMAGUCHI R, SAKAMOTO A, YAMAMOTO T, et al. Di-(2-ethylhexyl)phthalate suppresses IL-12p40 production by GMCSF-dependent macrophages via the PPARα/TNFAIP3/TRAF6axis after lipopolysaccharide stimulation[J]. Hum Exp Toxicol,2018, 37(6):596-607.
    [35] KEMPINSKA-PODHORODECKA A, MILKIEWICZ M, WASIK U, et al. Decreased expression of vitamin D receptor affects an immune response in primary biliary cholangitis via the VDRmiRNA155-SOCS1 pathway[J]. Int J Mol Sci, 2017, 18(2):e289.
    [36] ZHANG M, LIN L, XU C, et al. VDR agonist prevents diabetic endothelial dysfunction through inhibition of prolyl isomerase-1-mediated mitochondrial oxidative stress and inflammation[J]. Oxid Med Cell Longev, 2018, 2018:1714896.
    [37] POLS T, PUCHNER T, KORKMAZ HI, et al. Lithocholic acid controls adaptive immune responses by inhibition of Th1 activation through the Vitamin D receptor[J]. PLoS One, 2017,12(5):e0176715.
    [38] SACTA MA, THARMALINGAM B, COPPO M, et al. Genespecific mechanismsdirectglucocorticoid-receptor-driven repression of inflammatory response genes inmacrophages[J]. Elife, 2018, 7:e34864.
    [39] HU X, WANG Y, SHEIKHAHMADI A, et al. Effects of glucocorticoids on lipid metabolism and AMPK in broiler chickens’ liver[J]. Comp Biochem Physiol B Biochem Mol Biol,2019, 232:23-30.
    [40] WANG X, WANG F, LU Z, et al. Semi-quantitative profiling of bile acids in serum and liver reveals the dosage-related effects of dexamethasone on bile acid metabolism in mice[J].J Chromatogr B Analyt Technol Biomed Life Sci, 2018, 1095:65-74.
    [41] TAKIGAWA T, MIYAZAKI H, KINOSHITA M, et al. Glucocorticoid receptor-dependent immunomodulatory effect of ursodeoxycholic acid on liver lymphocytes in mice[J]. Am J Physiol Gastrointest Liver Physiol, 2013, 305(6):g427-g438.
  • 加载中
计量
  • 文章访问数:  726
  • HTML全文浏览量:  36
  • PDF下载量:  130
  • 被引次数: 0
出版历程
  • 出版日期:  2020-05-20
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回