中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

外泌体非编码RNA在肝纤维化中的作用及机制

钱南南 唐露露 魏涛华 杨悦 郝文杰 杨文明

引用本文:
Citation:

外泌体非编码RNA在肝纤维化中的作用及机制

DOI: 10.3969/j.issn.1001-5256.2021.10.036
基金项目: 

国家自然科学基金 (81973825);

2019国家中医药管理局《中医药循证能力建设项目》 (2019XZZX-NB001);

安徽中医药大学新安医学教育部重点实验室开放基金 (2020xayx12)

详细信息
    通信作者:

    杨文明,yangwm8810@126.com

  • 中图分类号: R575.2

Role and mechanism of exosome non-coding RNA in liver fibrosis

Research funding: 

National Natural Science Foundation of China (81973825);

National Administration of Traditional Chinese Medicine: 2019 Project of building evidence based practice capacity for TCM (2019XZZX-NB001);

Open Fund of the Key Laboratory of Xin'an Medical Education Ministry of Anhui University of Traditional Chinese Medicine (2020xayx12)

  • 摘要: 肝纤维化是多种慢性肝脏疾病发展为肝硬化的初始阶段,且是一个可逆的过程。外泌体作为能够携带包括蛋白、脂质、核酸等活性物质的一种细胞外囊泡亚群,参与细胞间的信号通讯,近年来备受关注。研究表明,外泌体中非编码RNA在肝纤维化的发生发展过程中起着重要作用。在此,探讨了外泌体长链非编码RNA(包括MALAT1、H19、GAS5、MEG3、PVT1和P21)、外泌体短链非编码RNA(包括微小RNA、小核仁RNA、PIWI-interacting RNA和小干扰RNA)、外泌体环状RNA在肝纤维化发生发展过程中的作用机制。总结了不同来源(如肝细胞、胆管细胞等)的外泌体携带非编码RNA主要通过影响肝星状细胞活化、增殖、迁移、转化等过程发挥作用。未来通过对外泌体非编码RNA的深入研究,有望为肝纤维化治疗药物寻找到潜在新靶点。

     

  • 表  1  外泌体miRNA与肝纤维化的关系

    基因 表达情况 机制 参考文献
    miR-200c 上调 通过下调FOG2蛋白表达和上调PI3K/Akt信号转导途径激活肝纤维化中的HSC [23]
    miR-942 上调 通过下调BAMBI介导HSC活化 [24]
    miR-302c 上调 通过抑制E6AP,来激活TGFβ诱导的有丝分裂原活化蛋白激酶信号通路促进肝纤维化 [25]
    miR-182 上调 通过激活PI3K/AKT信号通路促进HSC增殖,并抑制凋亡 [26]
    miR-195 上调 通过靶向Smad7激活HSC [27]
    miR-30和miR-193 下调 抑制TGFβ介导的HSC活化 [28]
    miR-30 下调 通过抑制KLF11表达使HSC中的TGFβ/Smad信号转导减弱,从而促进活化的HSC逆转至静止状态 [29]
    miR-326 下调 通过介导TLR4/MyD88/NF-κB信号通路抑制HSC活化 [30]
    miR-21 上调 促进HSC的活化及增殖 [31-32]
    下调 通过靶向PTEN/PI3K/AKT途径促进HSC增殖并抑制其凋亡
    miR-145 上调 通过靶向KLF4促进HSC活化和肝纤维化 [33-34]
    下调 通过miR-145-ZEB2-p53调控体系可能参与活化HSC的凋亡
    miR-122和miR-214 下调 通过外泌体介导抑制HSC的活化,从而达到抗纤维化的作用 [35]
    miR-181-5p 下调 通过外泌体介导抑制STAT3/Bcl-2-Beclin 1途径来增加自噬并减少TGFβ1诱导的肝纤维化 [37]
    miR-199a-5p 下调 通过外泌体作用于CCN2,导致CCN2及其下游靶标α-SMA和Ⅰ型胶原蛋白α1的表达降低,从而发挥抗纤维化的作用 [38]
    miR-223 下调 通过外泌体途径调控NLRP3和caspase-1发挥保肝作用 [39]
    miR-103-3p 上调 通过外泌体介导靶向KLF4促进HSC的增殖和激活 [40]
    下载: 导出CSV
  • [1] SASAKI R, KANDA T, YOKOSUKA O, et al. Exosomes and hepatocellular carcinoma: From bench to bedside[J]. Int J Mol Sci, 2019, 20(6): 1406. DOI: 10.3390/ijms20061406.
    [2] YU F, LU Z, CAI J, et al. MALAT1 functions as a competing endogenous RNA to mediate Rac1 expression by sequestering miR-101b in liver fibrosis[J]. Cell Cycle, 2015, 14(24): 3885-3896. DOI: 10.1080/15384101.2015.1120917.
    [3] WU Y, LIU X, ZHOU Q, et al. Silent information regulator 1 (SIRT1) ameliorates liver fibrosis via promoting activated stellate cell apoptosis and reversion[J]. Toxicol Appl Pharmacol, 2015, 289(2): 163-176. DOI: 10.1016/j.taap.2015.09.028.
    [4] DAI X, CHEN C, XUE J, et al. Exosomal MALAT1 derived from hepatic cells is involved in the activation of hepatic stellate cells via miRNA-26b in fibrosis induced by arsenite[J]. Toxicol Lett, 2019, 316: 73-84. DOI: 10.1016/j.toxlet.2019.09.008.
    [5] XIAO Y, LIU R, LI X, et al. Long noncoding RNA H19 contributes to cholangiocyte proliferation and cholestatic liver fibrosis in biliary atresia[J]. Hepatology, 2019, 70(5): 1658-1673. DOI: 10.1002/hep.30698.
    [6] YU F, ZHENG J, MAO Y, et al. Long non-coding RNA growth arrest-specific transcript 5 (GAS5) inhibits liver fibrogenesis through a mechanism of competing endogenous RNA[J]. J Biol Chem, 2015, 290(47): 28286-28298. DOI: 10.1074/jbc.M115.683813.
    [7] DONG Z, LI S, WANG X, et al. lncRNA GAS5 restrains CCl(4)-induced hepatic fibrosis by targeting miR-23a through the PTEN/PI3K/Akt signaling pathway[J]. Am J Physiol Gastrointest Liver Physiol, 2019, 316(4): g539-g550. DOI: 10.1152/ajpgi.00249.2018.
    [8] KOLDEMIR O, ÖZGVR E, GEZER U. Accumulation of GAS5 in exosomes is a marker of apoptosis induction[J]. Biomed Rep, 2017, 6(3): 358-362. DOI: 10.3892/br.2017.848.
    [9] CHEN L, YANG W, GUO Y, et al. Exosomal lncRNA GAS5 regulates the apoptosis of macrophages and vascular endothelial cells in atherosclerosis[J]. PLoS One, 2017, 12(9): e0185406. DOI: 10.1371/journal.pone.0185406.
    [10] ZHU X, WANG X, WANG Y, et al. Exosomal long non-coding RNA GAS5 suppresses Th1 differentiation and promotes Th2 differentiation via downregulating EZH2 and T-bet in allergic rhinitis[J]. Mol Immunol, 2020, 118: 30-39. DOI: 10.1016/j.molimm.2019.11.009.
    [11] FILIPPOV-LEVY N, COHEN-SCHUSSHEIM H, TROPÉ CG, et al. Expression and clinical role of long non-coding RNA in high-grade serous carcinoma[J]. Gynecol Oncol, 2018, 148(3): 559-566. DOI: 10.1016/j.ygyno.2018.01.004.
    [12] ZHANG J, LIU SC, LUO XH, et al. Exosomal long noncoding RNAs are differentially expressed in the cervicovaginal lavage samples of cervical cancer patients[J]. J Clin Lab Anal, 2016, 30(6): 1116-1121. DOI: 10.1002/jcla.21990.
    [13] LIU F, CHEN Y, LIU R, et al. Long noncoding RNA (MEG3) in urinal exosomes functions as a biomarker for the diagnosis of Hunner-type interstitial cystitis (HIC)[J]. J Cell Biochem, 2020, 121(2): 1227-1237. DOI: 10.1002/jcb.29356.
    [14] HE Y, WU YT, HUANG C, et al. Inhibitory effects of long noncoding RNA MEG3 on hepatic stellate cells activation and liver fibrogenesis[J]. Biochim Biophys Acta, 2014, 1842(11): 2204-2215. DOI: 10.1016/j.bbadis.2014.08.015.
    [15] YU F, GENG W, DONG P, et al. LncRNA-MEG3 inhibits activation of hepatic stellate cells through SMO protein and miR-212[J]. Cell Death Dis, 2018, 9(10): 1014. DOI: 10.1038/s41419-018-1068-x.
    [16] YU F, DONG B, DONG P, et al. Hypoxia induces the activation of hepatic stellate cells through the PVT1-miR-152-ATG14 signaling pathway[J]. Mol Cell Biochem, 2020, 465(1-2): 115-123. DOI: 10.1007/s11010-019-03672-y.
    [17] MENG Y, QIU S, SUN L, et al. Knockdown of exosome-mediated lnc-PVT1 alleviates lipopolysaccharide-induced osteoarthritis progression by mediating the HMGB1/TLR4/NF-κB pathway via miR-93-5p[J]. Mol Med Rep, 2020, 22(6): 5313-5325. DOI: 10.3892/mmr.2020.11594.
    [18] WU L, XIA J, LI D, et al. Mechanisms of M2 macrophage-derived exosomal long non-coding RNA PVT1 in regulating Th17 cell response in experimental autoimmune encephalomyelitisa[J]. Front Immunol, 2020, 11: 1934. DOI: 10.3389/fimmu.2020.01934.
    [19] YU F, ZHOU G, HUANG K, et al. Serum lincRNA-p21 as a potential biomarker of liver fibrosis in chronic hepatitis B patients[J]. J Viral Hepat, 2017, 24(7): 580-588. DOI: 10.1111/jvh.12680.
    [20] ZHENG J, DONG P, MAO Y, et al. lincRNA-p21 inhibits hepatic stellate cell activation and liver fibrogenesis via p21[J]. FEBS J, 2015, 282(24): 4810-4821. DOI: 10.1111/febs.13544.
    [21] TU X, ZHANG Y, ZHENG X, et al. TGF-β-induced hepatocyte lincRNA-p21 contributes to liver fibrosis in mice[J]. Sci Rep, 2017, 7(1): 2957. DOI: 10.1038/s41598-017-03175-0.
    [22] CASTELLANO JJ, MARRADES RM, MOLINS L, et al. Extracellular vesicle lincRNA-p21 expression in tumor-draining pulmonary vein defines prognosis in NSCLC and modulates endothelial cell behavior[J]. Cancers (Basel), 2020, 12(3): 734. DOI: 10.3390/cancers12030734.
    [23] MA T, CAI X, WANG Z, et al. miR-200c accelerates hepatic stellate cell-induced liver fibrosis via targeting the FOG2/PI3K pathway[J]. Biomed Res Int, 2017, 2017: 2670658. DOI: 10.1155/2017/2670658.
    [24] TAO L, XUE D, SHEN D, et al. MicroRNA-942 mediates hepatic stellate cell activation by regulating BAMBI expression in human liver fibrosis[J]. Arch Toxicol, 2018, 92(9): 2935-2946. DOI: 10.1007/s00204-018-2278-9.
    [25] KIM JY, KIM KM, YANG JH, et al. Induction of E6AP by microRNA-302c dysregulation inhibits TGF-β-dependent fibrogenesis in hepatic stellate cells[J]. Sci Rep, 2020, 10(1): 444. DOI: 10.1038/s41598-019-57322-w.
    [26] HUANG Y, FAN X, TAO R, et al. Effect of miR-182 on hepatic fibrosis induced by Schistosomiasis japonica by targeting FOXO1 through PI3K/AKT signaling pathway[J]. J Cell Physiol, 2018, 233(10): 6693-6704. DOI: 10.1002/jcp.26469.
    [27] SONG LY, MA YT, WU CF, et al. MicroRNA-195 activates hepatic stellate cells in vitro by targeting Smad7[J]. Biomed Res Int, 2017, 2017: 1945631. DOI: 10.1155/2017/1945631.
    [28] ROY S, BENZ F, VARGAS CARDENAS D, et al. miR-30c and miR-193 are a part of the TGF-β-dependent regulatory network controlling extracellular matrix genes in liver fibrosis[J]. J Dig Dis, 2015, 16(9): 513-524. DOI: 10.1111/1751-2980.12266.
    [29] TU X, ZHENG X, LI H, et al. MicroRNA-30 protects against carbon tetrachloride-induced liver fibrosis by attenuating transforming growth factor beta signaling in hepatic stellate cells[J]. Toxicol Sci, 2015, 146(1): 157-169. DOI: 10.1093/toxsci/kfv081.
    [30] LIAO X, ZHAN W, TIAN T, et al. MicroRNA-326 attenuates hepatic stellate cell activation and liver fibrosis by inhibiting TLR4 signaling[J]. J Cell Biochem, 2019. DOI: 10.1002/jcb.29520.[Online ahead of print]
    [31] KENNEDY LL, MENG F, VENTER JK, et al. Knockout of microRNA-21 reduces biliary hyperplasia and liver fibrosis in cholestatic bile duct ligated mice[J]. Lab Invest, 2016, 96(12): 1256-1267. DOI: 10.1038/labinvest.2016.112.
    [32] HAO XJ, XU CZ, WANG JT, et al. miR-21 promotes proliferation and inhibits apoptosis of hepatic stellate cells through targeting PTEN/PI3K/AKT pathway[J]. J Recept Signal Transduct Res, 2018, 38(5-6): 455-461. DOI: 10.1080/10799893.2019.1585452.
    [33] YANG J, LU Y, YANG P, et al. MicroRNA-145 induces the senescence of activated hepatic stellate cells through the activation of p53 pathway by ZEB2[J]. J Cell Physiol, 2019, 234(5): 7587-7599. DOI: 10.1002/jcp.27521.
    [34] MEN R, WEN M, ZHAO M, et al. MircoRNA-145 promotes activation of hepatic stellate cells via targeting krüppel-like factor 4[J]. Sci Rep, 2017, 7: 40468. DOI: 10.1038/srep40468.
    [35] MUHAMMAD YUSUF AN, RAJA ALI RA, MUHAMMAD NAWAWI KN, et al. Potential biomarkers in NASH-induced liver cirrhosis with hepatocellular carcinoma: A preliminary work on roles of exosomal miR-182, miR-301a, and miR-373[J]. Malays J Pathol, 2020, 42(3): 377-384.
    [36] LOU G, YANG Y, LIU F, et al. MiR-122 modification enhances the therapeutic efficacy of adipose tissue-derived mesenchymal stem cells against liver fibrosis[J]. J Cell Mol Med, 2017, 21(11): 2963-2973. DOI: 10.1111/jcmm.13208.
    [37] QU Y, ZHANG Q, CAI X, et al. Exosomes derived from miR-181-5p-modified adipose-derived mesenchymal stem cells prevent liver fibrosis via autophagy activation[J]. J Cell Mol Med, 2017, 21(10): 2491-2502. DOI: 10.1111/jcmm.13170.
    [38] CHEN L, CHEN R, VELAZQUEZ VM, et al. Fibrogenic signaling is suppressed in hepatic stellate cells through targeting of connective tissue growth factor (CCN2) by cellular or exosomal MicroRNA-199a-5p[J]. Am J Pathol, 2016, 186(11): 2921-2933. DOI: 10.1016/j.ajpath.2016.07.011.
    [39] CHEN L, LU FB, CHEN DZ, et al. BMSCs-derived miR-223-containing exosomes contribute to liver protection in experimental autoimmune hepatitis[J]. Mol Immunol, 2018, 93: 38-46. DOI: 10.1016/j.molimm.2017.11.008.
    [40] CHEN L, YAO X, YAO H, et al. Exosomal miR-103-3p from LPS-activated THP-1 macrophage contributes to the activation of hepatic stellate cells[J]. FASEB J, 2020, 34(4): 5178-5192. DOI: 10.1096/fj.201902307RRR.
    [41] RIMER JM, LEE J, HOLLEY CL, et al. Long-range function of secreted small nucleolar RNAs that direct 2'-O-methylation[J]. J Biol Chem, 2018, 293(34): 13284-13296. DOI: 10.1074/jbc.RA118.003410.
    [42] XIE Z, WU Y, LIU S, et al. LncRNA-SNHG7/miR-29b/DNMT3A axis affects activation, autophagy and proliferation of hepatic stellate cells in liver fibrosis[J]. Clin Res Hepatol Gastroenterol, 2021, 45(2): 101469. DOI: 10.1016/j.clinre.2020.05.017.
    [43] TANG X, XIE X, WANG X, et al. The combination of piR-823 and eukaryotic initiation factor 3 B (EIF3B) activates hepatic stellate cells via upregulating TGF-β1 in liver fibrogenesis[J]. Med Sci Monit, 2018, 24: 9151-9165. DOI: 10.12659/MSM.914222.
    [44] ZEUSCHNER P, LINXWEILER J, JUNKER K. Non-coding RNAs as biomarkers in liquid biopsies with a special emphasis on extracellular vesicles in urological malignancies[J]. Expert Rev Mol Diagn, 2020, 20(2): 151-167. DOI: 10.1080/14737159.2019.1665998.
    [45] TORIYABE N, SAKURAI Y, KATO A, et al. The delivery of small interfering RNA to hepatic stellate cells using a lipid nanoparticle composed of a vitamin A-scaffold lipid-like material[J]. J Pharm Sci, 2017, 106(8): 2046-2052. DOI: 10.1016/j.xphs.2017.04.042.
    [46] ZHANG Q, SHU FL, JIANG YF, et al. Influence of expression plasmid of connective tissue growth factor and tissue inhibitor of metalloproteinase-1 shRNA on hepatic precancerous fibrosis in rats[J]. Asian Pac J Cancer Prev, 2015, 16(16): 7205-7210. DOI: 10.7314/apjcp.2015.16.16.7205.
    [47] GE S, XIONG Y, WU X, et al. Role of growth factor receptor-bound 2 in CCl(4)-induced hepatic fibrosis[J]. Biomed Pharmacother, 2017, 92: 942-951. DOI: 10.1016/j.biopha.2017.05.142.
    [48] PAN Q, RAMAKRISHNAIAH V, HENRY S, et al. Hepatic cell-to-cell transmission of small silencing RNA can extend the therapeutic reach of RNA interference (RNAi)[J]. Gut, 2012, 61(9): 1330-1339. DOI: 10.1136/gutjnl-2011-300449.
    [49] ZHOU YP, LV XY, QU H, et al. Differential expression of circular RNAs in hepatic tissue in a model of liver fibrosis and functional analysis of their target genes[J]. Hepatol Res, 2019, 49(3): 324-334. DOI: 10.1111/hepr.13284.
    [50] LIU W, FENG R, LI X, et al. TGF-β-and lipopolysaccharide-induced upregulation of circular RNA PWWP2A promotes hepatic fibrosis via sponging miR-203 and miR-223[J]. Aging (Albany NY), 2019, 11(21): 9569-9580. DOI: 10.18632/aging.102405.
    [51] JI D, CHEN GF, WANG JC, et al. Hsa_circ_0070963 inhibits liver fibrosis via regulation of miR-223-3p and LEMD3[J]. Aging (Albany NY), 2020, 12(2): 1643-1655. DOI: 10.18632/aging.102705.
    [52] WANG W, DONG R, GUO Y, et al. CircMTO1 inhibits liver fibrosis via regulation of miR-17-5p and Smad7[J]. J Cell Mol Med, 2019, 23(8): 5486-5496. DOI: 10.1111/jcmm.14432.
    [53] JIN H, LI C, DONG P, et al. Circular RNA cMTO1 promotes PTEN expression through sponging miR-181b-5p in liver fibrosis[J]. Front Cell Dev Biol, 2020, 8: 714. DOI: 10.3389/fcell.2020.00714.
    [54] LI S, SONG F, LEI X, et al. hsa_circ_0004018 suppresses the progression of liver fibrosis through regulating the hsa-miR-660-3p/TEP1 axis[J]. Aging (Albany NY), 2020, 12(12): 11517-11529. DOI: 10.18632/aging.103257.
    [55] ZHU M, LIU X, LI W, et al. Exosomes derived from mmu_circ_0000623-modified ADSCs prevent liver fibrosis via activating autophagy[J]. Hum Exp Toxicol, 2020, 39(12): 1619-1627. DOI: 10.1177/0960327120931152.
  • 加载中
表(1)
计量
  • 文章访问数:  412
  • HTML全文浏览量:  103
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-01
  • 录用日期:  2021-03-19
  • 出版日期:  2021-10-20
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回