中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

嵌合抗原受体T细胞治疗原发性肝癌临床研究进展

李爽 刘哲睿 赵琦 陆荫英

引用本文:
Citation:

嵌合抗原受体T细胞治疗原发性肝癌临床研究进展

DOI: 10.3969/j.issn.1001-5256.2023.05.004
基金项目: 

深圳市科技创新委员会可持续发展专项 (KCXFZ202002011006448)

利益冲突声明:本文不存在任何利益冲突。
作者贡献声明:李爽、刘哲睿负责提出研究选题,撰写论文;陆荫英、赵琦负责调研整理文献,修订论文,终审论文。
详细信息
    通信作者:

    陆荫英,luyinying1973@163.com (ORCID:0000-0002-7737-2334)

Clinical research advances in chimeric antigen receptor T-cell therapy for primary liver cancer

Research funding: 

The Science Technology and Innovation Commission of Shenzhen Municipality (KCXFZ202002011006448)

More Information
  • 摘要: 原发性肝癌具有起病隐匿以及早期诊断困难等特点,治疗手段有限且效果不佳。嵌合抗原受体(CAR)T细胞疗法是经基因编辑修饰的T淋巴细胞识别肿瘤特异性抗原并活化T淋巴细胞,发挥肿瘤杀伤作用。CAR-T细胞疗法治疗血液肿瘤取得重大进展,近年来在实体瘤领域也有了很好的临床疗效,尽管CAR-T细胞治疗技术已经从第一代发展到第五代,但在实体瘤领域仍存在诸多挑战。本文将对CAR-T细胞治疗原发性肝癌的机制以及相关研究进展进行全面的综述,包括目前CAR-T细胞疗法治疗原发性肝癌主要的靶点GPC3、AFP、MUC1、NKG2D等,CAR-T细胞治疗与溶瘤病毒,逐渐兴起的免疫检查点抑制剂等联合治疗,以及对以上靶点以及治疗方式的生物学研究、临床前研究和临床研究的回顾,并对CAR-T细胞治疗原发性肝癌面临的挑战及解决措施进行汇总。为未来CAR-T细胞疗法在肝癌领域的临床发展提供参考。

     

  • 表  1  CAR-T治疗HCC的临床研究

    Table  1.   Clinical study on CAR-T therapy for HCC

  • [1] SUNG H, FERLAY J, SIEGEL RL, et al. Global cancer statistics 2020: GLOBOCAN Estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
    [2] WEI J, GUO Y, WANG Y, et al. Clinical development of CAR T cell therapy in China: 2020 update[J]. Cell Mol Immunol, 2021, 18(4): 792-804. DOI: 10.1038/s41423-020-00555-x.
    [3] SHI D, SHI Y, KASEB AO, et al. Chimeric antigen receptor-glypican-3 T-cell therapy for advanced hepatocellular carcinoma: results of phase i trials[J]. Clin Cancer Res, 2020, 26(15): 3979-3989. DOI: 10.1158/1078-0432.CCR-19-3259.
    [4] DEPIL S, DUCHATEAU P, GRUPP SA, et al. 'Off-the-shelf' allogeneic CAR T cells: development and challenges[J]. Nat Rev Drug Discov, 2020, 19(3): 185-199. DOI: 10.1038/s41573-019-0051-2.
    [5] GUO J, TANG Q. Recent updates on chimeric antigen receptor T cell therapy for hepatocellular carcinoma[J]. Cancer Gene Ther, 2021, 28(10-11): 1075-1087. DOI: 10.1038/s41417-020-00259-4.
    [6] ZHANG C, LIU J, ZHONG JF, et al. Engineering CAR-T cells[J]. Biomark Res, 2017, 5: 22. DOI: 10.1186/s40364-017-0102-y.
    [7] AMINI L, SILBERT SK, MAUDE SL, et al. Preparing for CAR T cell therapy: patient selection, bridging therapies and lymphodepletion[J]. Nat Rev Clin Oncol, 2022, 19(5): 342-355. DOI: 10.1038/s41571-022-00607-3.
    [8] ZHENG N, FANG J, XUE G, et al. Induction of tumor cell autosis by myxoma virus-infected CAR-T and TCR-T cells to overcome primary and acquired resistance[J]. Cancer Cell, 2022, 40(9): 973-985. e7. DOI: 10.1016/j.ccell.2022.08.001.
    [9] DIMITRI A, HERBST F, FRAIETTA JA. Engineering the next-generation of CAR T-cells with CRISPR-Cas9 gene editing[J]. Mol Cancer, 2022, 21(1): 78. DOI: 10.1186/s12943-022-01559-z.
    [10] GAO TA, CHEN YY. Engineering next-generation CAR-T cells: overcoming tumor hypoxia and metabolism[J]. Annu Rev Chem Biomol Eng, 2022, 13: 193-216. DOI: 10.1146/annurev-chembioeng-092120-092914.
    [11] YOUNG RM, ENGEL NW, USLU U, et al. Next-generation CAR T- cell therapies[J]. Cancer Discov, 2022, 12(7): 1625-1633. DOI: 10.1158/2159-8290.CD-21-1683.
    [12] GOODMAN DB, AZIMI CS, KEARNS K, et al. Pooled screening of CAR T cells identifies diverse immune signaling domains for next-generation immunotherapies[J]. Sci Transl Med, 2022, 14(670): eabm1463. DOI: 10.1126/scitranslmed.abm1463.
    [13] MEHRABADI AZ, RANJBAR R, FARZANEHPOUR M, et al. Therapeutic potential of CAR T cell in malignancies: A scoping review[J]. Biomed Pharmacother, 2022, 146: 112512. DOI: 10.1016/j.biopha.2021.112512.
    [14] ZMIEVSKAYA E, VALIULLINA A, GANEEVA I, et al. Application of CAR-T cell therapy beyond Oncology: Autoimmune diseases and viral infections[J]. Biomedicines, 2021, 9(1): 59. DOI: 10.3390/biomedicines9010059.
    [15] RADIC M, NEELI I, MARION T. Prospects for CAR T cell immunotherapy in autoimmune diseases: clues from Lupus[J]. Expert Opin Biol Ther, 2022, 22(4): 499-507. DOI: 10.1080/14712598.2022.2026921.
    [16] ALEXANDER T, GRECO R. Hematopoietic stem cell transplantation and cellular therapies for autoimmune diseases: overview and future considerations from the Autoimmune Diseases Working Party (ADWP) of the European Society for Blood and Marrow Transplantation (EBMT)[J]. Bone Marrow Transplant, 2022, 57(7): 1055-1062. DOI: 10.1038/s41409-022-01702-w.
    [17] MAKKOUK A, YANG XC, BARCA T, et al. Off-the-shelf Vδ1 gamma delta T cells engineered with glypican-3 (GPC-3)-specific chimeric antigen receptor (CAR) and soluble IL-15 display robust antitumor efficacy against hepatocellular carcinoma[J]. J Immunother Cancer, 2021, 9(12): e003441. DOI: 10.1136/jitc-2021-003441.
    [18] KOLLURI A, LI D, LI N, et al. Engineered, fully human nanobody-based CAR T cells have enhanced antitumor activity against hepatocellular carcinoma in preclinical models[Z]. American Society of Clinical Oncology, 2022
    [19] ASPURIA PJ, SEMANA M, VIVONA S, et al. Engineered human IL-2/IL-2Rb orthogonal pairs selectively enhance anti-GPC3 CAR T cells to drive complete responses in solid epithelial tumor models[J]. Cancer Res, 2022, 82(12_Supplement): 2824.
    [20] RODDY H, MEYER T, RODDIE C. Novel cellular therapies for hepatocellular carcinoma[J]. Cancers (Basel), 2022, 14(3): 504. DOI: 10.3390/cancers14030504.
    [21] SUN H, XING C, JIANG S, et al. Long term complete response of advanced hepatocellular carcinoma to glypican-3 specific chimeric antigen receptor T-Cells plus sorafenib, a case report[J]. Front Immunol, 2022, 13: 963031. DOI: 10.3389/fimmu.2022.963031.
    [22] STEFFIN D HM, BATRA SA, RATHI P, et al. A phase I clinical trial using armored GPC3 CAR T cells for children with relapsed/refractory liver tumors[Z]. American Society of Clinical Oncology, 2019
    [23] CAO G, ZHANG G, LIU M, et al. GPC3-targeted CAR-T cells secreting B7H3-targeted BiTE exhibit potent cytotoxicity activity against hepatocellular carcinoma cell in the in vitro assay[J]. Biochem Biophys Rep, 2022, 31: 101324. DOI: 10.1016/j.bbrep.2022.101324.
    [24] FANG W, FU Q, ZHAO Q, et al. Phase I trial of fourth-generation chimeric antigen receptor T-cells targeting glypican-3 for advanced hepatocellular carcinoma[Z]. Wolters Kluwer Health, 2021
    [25] POOREBRAHIM M, QUIROS-FERNANDEZ I, FAKHR E, et al. Generation of CAR-T cells using lentiviral vectors[M]. Methods in cell biology, Elsevier, 2022: 39-69.
    [26] GILLESPIE JR, UVERSKY VN. Structure and function of alpha-fetoprotein: a biophysical overview[J]. Biochim Biophys Acta, 2000, 1480(1-2): 41-56. DOI: 10.1016/s0167-4838(00)00104-7.
    [27] GOLUBOVSKAYA V. CAR-T Cells targeting immune checkpoint pathway players[J]. Front Biosci (Landmark Ed), 2022, 27(4): 121. DOI: 10.31083/j.fbl2704121.
    [28] WANG W, SHA JP, DING F, et al. Targeting AFP-MHC complex with CAR T cell therapy for liver cancer[J]. Chin Hepatol, 2022, 27(11): 1175-1179. DOI: 10.3969/j.issn.1008-1704.2022.11.008.

    王玮, 沙钧平, 丁锋, 等. 以甲胎蛋白-MHC复合物为靶向的CAR T细胞治疗肝癌的效果评估[J]. 肝脏, 2022, 27(11): 1175-1179. DOI: 10.3969/j.issn.1008-1704.2022.11.008.
    [29] SAGNELLA SM, WHITE AL, YEO D, et al. Locoregional delivery of CAR-T cells in the clinic[J]. Pharmacol Res, 2022, 182: 106329. DOI: 10.1016/j.phrs.2022.106329.
    [30] GALLE PR, FOERSTER F, KUDO M, et al. Biology and significance of alpha-fetoprotein in hepatocellular carcinoma[J]. Liver Int, 2019, 39(12): 2214-2229. DOI: 10.1111/liv.14223.
    [31] MAO L, SU S, LI J, et al. Development of engineered CAR T Cells targeting tumor-associated glycoforms of MUC1 for the treatment of intrahepatic cholangiocarcinoma[J]. J Immunother, 2023, 46(3): 89-95. DOI: 10.1097/CJI.0000000000000460.
    [32] ZHOU R, YAZDANIFAR M, ROY LD, et al. CAR T cells targeting the tumor MUC1 glycoprotein reduce triple-negative breast cancer growth[J]. Front Immunol, 2019, 10: 1149. DOI: 10.3389/fimmu.2019.01149.
    [33] CHEN L, CHEN F, LI J, et al. CAR-T cell therapy for lung cancer: Potential and perspective[J]. Thorac Cancer, 2022, 13(7): 889-899. DOI: 10.1111/1759-7714.14375.
    [34] LI KX, WU HY, PAN WY, et al. Correction: A novel approach for relapsed/refractory FLT3mut+acute myeloid leukaemia: synergistic effect of the combination of bispecific FLT3scFv/NKG2D-CAR T cells and gilteritinib[J]. Mol Cancer, 2022, 21(1): 134. DOI: 10.1186/s12943-022-01566-0.
    [35] TAY J, WANG J, DU Z, et al. Manufacturing NKG2D CAR-T cells with piggyBac transposon vectors and K562 artificial antigen-presenting cells[J]. Mol Ther Methods Clin Dev, 2021, 21: 107-120. DOI: 10.1016/j.omtm.2021.02.023.
    [36] SUN B, YANG D, DAI H, et al. Eradication of hepatocellular carcinoma by NKG2D-based CAR-T cells[J]. Cancer Immunol Res, 2019, 7(11): 1813-1823. DOI: 10.1158/2326-6066.CIR-19-0026.
    [37] XU Y, LI P, LIU Y, et al. Epi-immunotherapy for cancers: rationales of epi-drugs in combination with immunotherapy and advances in clinical trials[J]. Cancer Commun (Lond), 2022, 42(6): 493-516. DOI: 10.1002/cac2.12313.
    [38] SALLMAN DA, KERRE T, HAVELANGE V, et al. CYAD-01, an autologous NKG2D-based CAR T-cell therapy, in relapsed or refractory acute myeloid leukaemia and myelodysplastic syndromes or multiple myeloma (THINK): haematological cohorts of the dose escalation segment of a phase 1 trial[J]. Lancet Haematol, 2023, 10(3): e191-e202. DOI: 10.1016/S2352-3026(22)00378-7.
    [39] ZHANG RY, WEI D, LIU ZK, et al. Doxycycline inducible chimeric antigen receptor t cells targeting CD147 for hepatocellular carcinoma therapy[J]. Front Cell Dev Biol, 2019, 7: 233. DOI: 10.3389/fcell.2019.00233.
    [40] SAKAMOTO M, MIYAGAKI T, KAMIJO H, et al. CD147-cyclophilin a interactions promote proliferation and survival of cutaneous T-cell lymphoma[J]. Int J Mol Sci, 2021, 22(15): 7889. DOI: 10.3390/ijms22157889.
    [41] ALSALLOUM A, SHEVCHENKO JA, SENNIKOV S. The Melanoma-Associated Antigen Family A (MAGE-A): A promising target for cancer immunotherapy?[J]. Cancers (Basel), 2023, 15(6): 1779. DOI: 10.3390/cancers15061779.
    [42] LIU X, XU Y, XIONG W, et al. Development of a TCR-like antibody and chimeric antigen receptor against NY-ESO-1/HLA-A2 for cancer immunotherapy[J]. J Immunother Cancer, 2022, 10(3): e004035. DOI: 10.1136/jitc-2021-004035.
    [43] GILL CM, BRASTIANOS PK. Emerging meningioma therapies ii: immunotherapies, novel radiotherapy techniques, and other experimental approaches[J]. Meningiomas: Comprehensive Strategies for Management, 2020: 227-238. DOI: 10.1007/978-3-030-59558-6_15.
    [44] MCGRATH K, DOTTI G. Combining oncolytic viruses with chimeric antigen receptor T Cell therapy[J]. Hum Gene Ther, 2021, 32(3-4): 150-157. DOI: 10.1089/hum.2020.278.
    [45] LUZZI S, GIOTTA LUCIFERO A, BRAMBILLA I, et al. Adoptive immunotherapies in neuro-oncology: classification, recent advances, and translational challenges[J]. Acta Biomed, 2020, 91(7-S): 18-31. DOI: 10.23750/abm.v91i7-S.9952.
    [46] LI D, QIN J, ZHOU T, et al. Bispecific GPC3/PD-1 CAR-T cells for the treatment of HCC[J]. Int J Oncol, 2023, 62(4): 1-11. DOI: 10.3892/ijo.2023.5501.
    [47] JIANG Y, WEN WH, YANG F, et al. Research progress of multi-target CAR-T cell therapy for cancer[J]. Cancer Res Prevent Treat, 2022, 49(7): 709-714. DOI: 10.3971/j.issn.1000-8578.2022.21.1224.

    蒋遥, 温伟红, 杨发, 等. 多靶点CAR-T细胞治疗肿瘤的研究进展[J]. 肿瘤防治研究, 2022, 49(7): 709-714. DOI: 10.3971/j.issn.1000-8578.2022.21.1224.
    [48] JONSSON VD, NG RH, DULLERUD N, et al. CAR T cell therapy drives endogenous locoregional T cell dynamics in a responding patient with glioblastoma[J]. bioRxiv, 2021: 2021.2009.2022.460392: DOI: 10.1101/2021.09.22.460392.
    [49] KIROUAC DC, ZMURCHOK C, DEYATI A, et al. Deconvolution of clinical variance in CAR-T cell pharmacology and response[J]. Nat Biotechnol, 2023. DOI: 10.1038/s41587-023-01687-x. [Online ahead of print]
    [50] REJESKI K, WU Z, BLUMENBERG V, et al. Oligoclonal T-cell expansion in a patient with bone marrow failure after CD19 CAR-T therapy for Richter-transformed DLBCL[J]. Blood, 2022, 140(20): 2175-2179. DOI: 10.1182/blood.2022017015.
    [51] POOREBRAHIM M, MELIEF J, PICO DE COAÑA Y, et al. Counteracting CAR T cell dysfunction[J]. Oncogene, 2021, 40(2): 421-435. DOI: 10.1038/s41388-020-01501-x.
    [52] YEKU OO, PURDON T, SPRIGGS DR, et al. Chimeric antigen receptor (CAR) T cells genetically engineered to deliver IL-12 to the tumor microenvironment in ovarian cancer[Z]. American Society of Clinical Oncology, 2017.
    [53] DAL BO M, de MATTIA E, BABOCI L, et al. New insights into the pharmacological, immunological, and CAR-T-cell approaches in the treatment of hepatocellular carcinoma[J]. Drug Resist Updat, 2020, 51: 100702. DOI: 10.1016/j.drup.2020.100702.
  • 加载中
表(1)
计量
  • 文章访问数:  475
  • HTML全文浏览量:  162
  • PDF下载量:  131
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-20
  • 录用日期:  2023-04-20
  • 出版日期:  2023-05-20
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回