中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

脂多糖在肝癌发生发展中的作用

王涛 王权 宋立华 段学章

引用本文:
Citation:

脂多糖在肝癌发生发展中的作用

DOI: 10.3969/j.issn.1001-5256.2023.07.032
基金项目: 

国家自然科学基金青年项目 (82003211)

利益冲突声明:本文不存在任何利益冲突。
作者贡献声明:王涛负责收集数据,撰写论文;王权负责资料整理;宋立华负责修改论文;段学章指导撰写文章,提供写作思路,修改文章并最终定稿。
详细信息
    通信作者:

    段学章,duanxuezhang2006@163.com (ORCID: 0000-0002-1941-9317)

Role of lipopolysaccharide in the development and progression of liver cancer

Research funding: 

Youth Program of National Natural Science Foundation of China (82003211)

More Information
  • 摘要: 肝癌是世界范围重大的公共卫生疾病。近来随着高通量测序及基因编辑技术的进步,肠道微生物群通过“肝-肠轴”途径在肝癌发生、进展及转移过程中的生物学机制被进一步揭示,特别是发现革兰阴性细菌外膜脂多糖可动员下游一系列致癌相关免疫级联反应。本文从肠道环境改变与肝癌发生的关系、脂多糖免疫调控、临床前治疗研究等方面,对肠道微生物脂多糖在肝癌发生发展中的可能作用机制进行了综述。

     

  • 图  1  肠道微生物LPS致癌机制

    Figure  1.  Mechanism of the gut microbiota lipopolysaccharide in hepatocarcinogenesis

  • [1] SUNG H, FERLAY J, SIEGEL RL, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
    [2] CULLIN N, AZEVEDO ANTUNES C, STRAUSSMAN R, et al. Microbiome and cancer[J]. Cancer Cell, 2021, 39(10): 1317-1341. DOI: 10.1016/j.ccell.2021.08.006.
    [3] BARTOLINI I, RISALITI M, TUCCI R, et al. Gut microbiota and immune system in liver cancer: Promising therapeutic implication from development to treatment[J]. World J Gastrointest Oncol, 2021, 13(11): 1616-1631. DOI: 10.4251/wjgo.v13.i11.1616.
    [4] RANF S. Immune sensing of lipopolysaccharide in plants and animals: Same but different[J]. PLoS Pathog, 2016, 12(6): e1005596. DOI: 10.1371/journal.ppat.1005596.
    [5] WENG MT, CHIU YT, WEI PY, et al. Microbiota and gastrointestinal cancer[J]. J Formos Med Assoc, 2019, 118(Suppl 1): S32-S41. DOI: 10.1016/j.jfma.2019.01.002.
    [6] SCHWABE RF, GRETEN TF. Gut microbiome in HCC-mechanisms, diagnosis and therapy[J]. J Hepatol, 2020, 72(2): 230-238. DOI: 10.1016/j.jhep.2019.08.016.
    [7] REN Z, LI A, JIANG J, et al. Gut microbiome analysis as a tool towards targeted non-invasive biomarkers for early hepatocellular carcinoma[J]. Gut, 2019, 68(6): 1014-1023. DOI: 10.1136/gutjnl-2017-315084.
    [8] ZHANG L, WU YN, CHEN T, et al. Relationship between intestinal microbial dysbiosis and primary liver cancer[J]. Hepatobiliary Pancreat Dis Int, 2019, 18(2): 149-157. DOI: 10.1016/j.hbpd.2019.01.002.
    [9] FERRERE G, WRZOSEK L, CAILLEUX F, et al. Fecal microbiota manipulation prevents dysbiosis and alcohol-induced liver injury in mice[J]. J Hepatol, 2017, 66(4): 806-815. DOI: 10.1016/j.jhep.2016.11.008.
    [10] KELLY CR, KHORUTS A, STALEY C, et al. Effect of fecal microbiota transplantation on recurrence in multiply recurrent clostridium difficile infection: A randomized trial[J]. Ann Intern Med, 2016, 165(9): 609-616. DOI: 10.7326/M16-0271.
    [11] MAO J, WANG D, LONG J, et al. Gut microbiome is associated with the clinical response to anti-PD-1 based immunotherapy in hepatobiliary cancers[J]. J Immunother Cancer, 2021, 9(12): e003334. DOI: 10.1136/jitc-2021-003334.
    [12] MEIGHANI A, ALIMIRAH M, RAMESH M, et al. Fecal microbiota transplantation for clostridioides difficile infection in patients with chronic liver disease[J]. Int J Hepatol, 2020, 2020: 1874570. DOI: 10.1155/2020/1874570.
    [13] BUTEL MJ. Probiotics, gut microbiota and health[J]. Med Mal Infect, 2014, 44(1): 1-8. DOI: 10.1016/j.medmal.2013.10.002.
    [14] KHEDR O, EL-SONBATY SM, MOAWED F, et al. Lactobacillus acidophilus ATCC 4356 exopolysaccharides suppresses mediators of inflammation through the inhibition of TLR2/STAT-3/P38-MAPK pathway in DEN-induced hepatocarcinogenesis in rats[J]. Nutr Cancer, 2022, 74(3): 1037-1047. DOI: 10.1080/01635581.2021.1934490.
    [15] WANG H, REDDY ST, FOGELMAN AM. The role of gut-derived oxidized lipids and bacterial lipopolysaccharide in systemic inflammation and atherosclerosis[J]. Curr Opin Lipidol, 2022, 33(5): 277-282. DOI: 10.1097/MOL.0000000000000841.
    [16] SUN C, WANG Z, HU L, et al. Targets of statins intervention in LDL-C metabolism: Gut microbiota[J]. Front Cardiovasc Med, 2022, 9: 972603. DOI: 10.3389/fcvm.2022.972603.
    [17] FEMINÒ R, FEMINÒ G, CAVEZZI A, et al. PCSK9 inhibition, LDL and lipopolysaccharides: a complex and "dangerous" relationship[J]. Int Angiol, 2021, 40(3): 248-260. DOI: 10.23736/S0392-9590.21.04632-0.
    [18] ZHENG Z, WANG B. The gut-liver axis in health and disease: The role of gut microbiota-derived signals in liver injury and regeneration[J]. Front Immunol, 2021, 12: 775526. DOI: 10.3389/fimmu.2021.775526.
    [19] ZHOU Y, ZHENG T, CHEN H, et al. Microbial intervention as a novel target in treatment of non-alcoholic fatty liver disease progression[J]. Cell Physiol Biochem, 2018, 51(5): 2123-2135. DOI: 10.1159/000495830.
    [20] GAO Q, ZHU H, DONG L, et al. Integrated proteogenomic characterization of HBV-related hepatocellular carcinoma[J]. Cell, 2019, 179(2): 561-577. e22. DOI: 10.1016/j.cell.2019.08.052.
    [21] GHOSH SS, WANG J, YANNIE PJ, et al. Intestinal barrier dysfunction, LPS translocation, and disease development[J]. J Endocr Soc, 2020, 4(2): bvz039. DOI: 10.1210/jendso/bvz039.
    [22] BENTALA H, VERWEIJ WR, HUIZINGA-VAN DER VLAG A, et al. Removal of phosphate from lipid A as a strategy to detoxify lipopolysaccharide[J]. Shock, 2002, 18(6): 561-566. DOI: 10.1097/00024382-200212000-00013.
    [23] S C H R O M M A B , B R A N D E N B U R G K , L O P P N O W H , e t a l . T h e c h a r g e o f e n d o t o x i n m o l e c u l e s i n f l u e n c e s t h e i r c o n f o r m a t i o n a n d I L - 6 - i n d u c i n g c a p a c i t y [ J ] . J I m m u n o l , 1 9 9 8 , 1 6 1 ( 1 0 ) : 5 4 6 4 - 5 4 7 1 . D O I :
    [24] LI T, WAN B, HUANG J, et al. Comparison of gene expression in hepatocellular carcinoma, liver development, and liver regeneration[J]. Mol Genet Genomics, 2010, 283(5): 485-492. DOI: 10.1007/s00438-010-0530-y.
    [25] LUEDDE T, SCHWABE RF. NF-κB in the liver-linking injury, fibrosis and hepatocellular carcinoma[J]. Nat Rev Gastroenterol Hepatol, 2011, 8(2): 108-118. DOI: 10.1038/nrgastro.2010.213.
    [26] YU LX, YAN HX, LIU Q, et al. Endotoxin accumulation prevents carcinogen-induced apoptosis and promotes liver tumorigenesis in rodents[J]. Hepatology, 2010, 52(4): 1322-1333. DOI: 10.1002/hep.23845.
    [27] DAPITO DH, MENCIN A, GWAK GY, et al. Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4[J]. Cancer Cell, 2012, 21(4): 504-516. DOI: 10.1016/j.ccr.2012.02.007.
    [28] CARACENI P, VARGAS V, SOLÀ E, et al. The use of rifaximin in patients with cirrhosis[J]. Hepatology, 2021, 74(3): 1660-1673. DOI: 10.1002/hep.31708.
    [29] HAN X, LUO Z, WANG W, et al. Efficacy and safety of rifaximin versus placebo or other active drugs in critical ill patients with hepatic encephalopathy[J]. Front Pharmacol, 2021, 12: 696065. DOI: 10.3389/fphar.2021.696065.
    [30] MA C, HAN M, HEINRICH B, et al. Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells[J]. Science, 2018, 360(6391): eaan5913. DOI: 10.1126/science.aan5931.
    [31] PONZIANI FR, NICOLETTI A, GASBARRINI A, et al. Diagnostic and therapeutic potential of the gut microbiota in patients with early hepatocellular carcinoma[J]. Ther Adv Med Oncol, 2019, 11: 1758835919848184. DOI: 10.1177/1758835919848184.
    [32] JUNG IH, CHOI JH, CHUNG YY, et al. Predominant activation of JAK/STAT3 pathway by interleukin-6 is implicated in hepatocarcinogenesis[J]. Neoplasia, 2015, 17(7): 586-597. DOI: 10.1016/j.neo.2015.07.005.
    [33] TAUB R. Hepatoprotection via the IL-6/Stat3 pathway[J]. J Clin Invest, 2003, 112(7): 978-980. DOI: 10.1172/JCI19974.
    [34] YANG J, ZHANG JX, WANG H, et al. Hepatocellular carcinoma and macrophage interaction induced tumor immunosuppression via Treg requires TLR4 signaling[J]. World J Gastroenterol, 2012, 18(23): 2938-2947. DOI: 10.3748/wjg.v18.i23.2938.
    [35] ZENG L, O'CONNOR C, ZHANG J, et al. IL-10 promotes resistance to apoptosis and metastatic potential in lung tumor cell lines[J]. Cytokine, 2010, 49(3): 294-302. DOI: 10.1016/j.cyto.2009.11.015.
    [36] YU L, WANG L, YI H, et al. Beneficial effects of LRP6-CRISPR on prevention of alcohol-related liver injury surpassed fecal microbiota transplant in a rat model[J]. Gut Microbes, 2020, 11(4): 1015-1029. DOI: 10.1080/19490976.2020.1736457.
    [37] WANG T, YU Y, LIANG X, et al. Lipid a has significance for optimal growth of coxiella burnetii in macrophage-like THP-1 cells and to a lesser extent in axenic media and non-phagocytic cells[J]. Front Cell Infect Microbiol, 2018, 8: 192. DOI: 10.3389/fcimb.2018.00192.
    [38] SHA T, SUNAMOTO M, KITAZAKI T, et al. Therapeutic effects of TAK-242, a novel selective Toll-like receptor 4 signal transduction inhibitor, in mouse endotoxin shock model[J]. Eur J Pharmacol, 2007, 571(2-3): 231-239. DOI: 10.1016/j.ejphar.2007.06.027.
    [39] HORIOKA K, TANAKA H, ISOZAKI S, et al. Acute colchicine poisoning causes endotoxemia via the destruction of intestinal barrier function: The curative effect of endotoxin prevention in a murine model[J]. Dig Dis Sci, 2020, 65(1): 132-140. DOI: 10.1007/s10620-019-05729-w.
    [40] MITRA S, ANAND U, SANYAL R, et al. Neoechinulins: Molecular, cellular, and functional attributes as promising therapeutics against cancer and other human diseases[J]. Biomed Pharmacother, 2022, 145: 112378. DOI: 10.1016/j.biopha.2021.112378.
    [41] KIM KS, CUI X, LEE DS, et al. Anti-inflammatory effect of neoechinulin a from the marine fungus Eurotium sp. SF-5989 through the suppression of NF-кB and p38 MAPK Pathways in lipopolysaccharide-stimulated RAW264.7 macrophages[J]. Molecules, 2013, 18(11): 13245-13259. DOI: 10.3390/molecules181113245.
    [42] BUSATTO S, WALKER SA, GRAYSON W, et al. Lipoprotein-based drug delivery[J]. Adv Drug Deliv Rev, 2020, 159: 377-390. DOI: 10.1016/j.addr.2020.08.003.
    [43] LLOVET JM, KELLEY RK, VILLANUEVA A, et al. Hepatocellular carcinoma[J]. Nat Rev Dis Primers, 2021, 7(1): 6. DOI: 10.1038/s41572-020-00240-3.
    [44] YOSHIMOTO S, LOO TM, ATARASHI K, et al. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome[J]. Nature, 2013, 499(7456): 97-101. DOI: 10.1038/nature12347.
  • 加载中
图(1)
计量
  • 文章访问数:  277
  • HTML全文浏览量:  91
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-11
  • 录用日期:  2022-11-14
  • 出版日期:  2023-07-20
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回