中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

慢性乙型肝炎与HBV相关慢加急性肝衰竭患者血浆外泌体差异miRNA的生物信息学分析

张舒阳 毕研贞 刘守胜 柳盛 辛永宁

引用本文:
Citation:

慢性乙型肝炎与HBV相关慢加急性肝衰竭患者血浆外泌体差异miRNA的生物信息学分析

DOI: 10.3969/j.issn.1001-5256.2023.08.013
基金项目: 

国家自然科学基金 (82202416);

北京肝胆相照公益基金会人工肝专项基金 (RGGJJ-2021-030)

伦理学声明:本研究方案于2021年9月9日经由青岛市市立医院医学伦理委员会审批,批号:2021临审字Y第017号。所有研究对象已签署知情同意书。
利益冲突声明:本文不存在任何利益冲突。
作者贡献声明:张舒阳负责查阅、归纳文献,资料分析,撰写论文;毕研贞、刘守胜负责修改论文;柳盛负责参与血液标本收集;辛永宁负责拟定写作思路,指导撰写文章并最后定稿。
详细信息
    通信作者:

    柳盛,lius123@163.com (ORCID: 0000-0002-9485-0211)

    辛永宁,xinyongning@163.com (ORCID: 0000-0002-3692-7655)

Differentially expressed microRNAs in plasma exosomes from patients with chronic hepatitis B or hepatitis B virus-related acute-on-chronic liver failure: A bioinformatics analysis

Research funding: 

National Natural Science Foundation of China (82202416);

Special Fund for Artificial Liver of Beijing Public Welfare Foundation (RGGJJ-2021-030)

More Information
  • 摘要:   目的  探讨慢性乙型肝炎(CHB)患者与HBV相关慢加急性肝衰竭(HBV-ACLF)患者血浆外泌体microRNA(miRNA)表达谱差异,分析其功能及生物学过程,以期获得可用于HBV-ACLF临床诊断的参考依据。  方法  选取2021年10月—2022年6月青岛市市立医院感染科住院的6例CHB患者及青岛市第六人民医院血液净化中心接受治疗的6例HBV-ACLF患者。运用Illumina高通量测序技术对这些患者的血浆外泌体miRNA进行检测,筛选差异miRNA并进行功能富集分析,分析其参与的生物学过程。检测得到的外泌体差异miRNA以倍数上调>2倍或下调>2倍且P<0.05为标准筛选。计量资料两组间比较采用Mann-Whitney U秩和检验。计数资料两组间比较采用χ2检验。  结果  筛选差异miRNA共249种,与CHB组相比,HBV-ACLF组上调miRNA 126种,下调miRNA 123种。生物信息学分析结果显示,这些差异表达miRNA主要参与了性腺发育、调控蛋白质稳定性、细胞对外界刺激反应等生物学过程,并与乙型肝炎、蛋白多糖在癌症中的作用、调节干细胞多能性、MAPK、Hippo、TNF、脂质代谢等信号通路密切相关。  结论  通过Illumina高通量测序技术筛选出的差异miRNA可能作为HBV-ACLF早期诊断及预后判断的生物标志物。

     

  • 图  1  CHB与HBV-ACLF血浆外泌体电镜下形态

    注:a, CHB血浆外泌体电镜下形态;b, HBV-ACLF血浆外泌体电镜下形态。比例尺100 nm。

    Figure  1.  Electron microscopic morphology of plasma exosomes from CHB and HBV-ACLF

    图  2  蛋白质免疫印迹法鉴定及纳米颗粒示踪分析结果

    注:a, 外泌体特异性标志蛋白CD63、CD81、TSG101及内质网蛋白Calnexin的表达结果,1与2分别代表HBV-ACLF与CHB两组样本;b, 利用NTA分析CHB样本外泌体粒径的大小;c, 利用NTA分析HBV-ACLF样本外泌体粒径的大小。

    Figure  2.  Results of western blot and nanoparticle tracking analysis

    图  3  差异miRNA的差异倍数和P值分布火山图

    注:红色表示上调;绿色表示下调。

    Figure  3.  Volcano plot of FoldChange and P-value distribution of differentially expressed miRNA

    图  4  样本间差异表达miRNA聚类分析热图(CHB vs HBV-ACLF)

    Figure  4.  The differentially expressed miRNA cluster analysis heat map(CHB vs HBV-ACLF)

    图  5  差异miRNA的GO富集分析

    Figure  5.  GO enrichment analysis of differentially expressed miRNA

    图  6  KEGG信号通路富集分析

    Figure  6.  KEGG signaling pathway enrichment analysis

    表  1  两组患者一般资料比较

    Table  1.   Comparison of baseline clinical characteristics between CHB group and HBV-ACLF group

    项目 CHB组(n=6) HBV-ACLF组(n=6) 统计值 P
    男性[例(%)] 4(66.67) 4(66.67) >0.05
    年龄(岁) 56.00(48.75~65.25) 55.50(50.50~66.00) Z=-0.241 0.810
    ALT(U/L) 23.94(15.47~36.38) 487.00(197.25~866.25) Z=-2.882 0.004
    AST(U/L) 23.09(19.63~32.06) 249.00(194.75~692.00) Z=-2.882 0.004
    TBil(μmol/L) 13.05(10.28~18.63) 284.90(268.08~355.93) Z=-2.882 0.004
    DBil(μmol/L) 2.92(2.53~3.64) 209.20(184.03~226.58) Z=-2.882 0.004
    WBC(×109/L) 4.92(4.09~5.62) 5.46(4.35~8.08) Z=-0.801 0.423
    RBC(×1012/L) 4.56(4.30~4.73) 4.17(3.72~4.85) Z=-0.642 0.521
    PLT(×109/L) 164.00(144.75~202.50) 86.00(50.25~148.75) Z=-2.082 0.037
    PT(s) 12.50(11.53~13.55) 23.25(17.90~38.30) Z=-2.882 0.004
    APTT(s) 31.15(28.63~39.25) 42.35(35.03~53.08) Z=-2.082 0.037
    注:APTT,活化部分凝血活酶时间。
    下载: 导出CSV

    表  2  HBV-ACLF患者差异表达的miRNA

    Table  2.   Differentially expressed miRNAs in HBV-ACLF patients

    上调miRNA 差异倍数 P 下调miRNA 差异倍数 P
    hsa-miR-6886-3p 43.586 0.000 00 hsa-miR-3689b-5p 0.119 0.010 19
    hsa-miR-6880-3p 42.256 0.000 00 hsa-miR-1298-5p 0.115 0.000 01
    hsa-miR-10398-5p 41.267 0.000 00 hsa-miR-4754 0.115 0.000 01
    hsa-miR-122b-3p 19.775 0.000 00 hsa-miR-183-3p 0.112 0.003 83
    hsa-miR-411-3p 12.467 0.000 02 hsa-miR-449b-5p 0.106 0.000 38
    hsa-miR-4327 11.427 0.000 15 hsa-miR-4317 0.106 0.015 70
    hsa-miR-7111-3p 10.981 0.000 04 hsa-miR-5689 0.103 0.000 00
    hsa-let-7b-3p 10.785 0.000 01 hsa-miR-520f-5p 0.098 0.010 06
    hsa-miR-335-3p 10.718 0.000 07 hsa-miR-4291 0.089 0.001 71
    hsa-miR-4646-5p 10.647 0.000 01 hsa-miR-96-3p 0.085 0.001 01
    hsa-miR-6887-5p 10.511 0.000 05 hsa-miR-631 0.081 0.000 06
    hsa-miR-1281 10.327 0.000 04 hsa-miR-3678-3p 0.066 0.000 00
    hsa-miR-4510 9.819 0.000 00 hsa-miR-6755-5p 0.066 0.001 92
    hsa-miR-2114-3p 9.280 0.000 14 hsa-miR-6841-5p 0.050 0.000 00
    hsa-miR-6760-5p 8.961 0.000 02 hsa-miR-4795-5p 0.049 0.000 34
    下载: 导出CSV
  • [1] TANG Y, LIANG H, ZENG G, et al. Advances in new antivirals for chronic hepatitis B[J]. Chin Med J (Engl), 2022, 135(5): 571-583. DOI: 10.1097/CM9.0000000000001994.
    [2] ARROYO V, MOREAU R, JALAN R. Acute-on-chronic liver failure[J]. N Engl J Med, 2020, 382(22): 2137-2145. DOI: 10.1056/NEJMra1914900.
    [3] CONSOLE L, SCALISE M, INDIVERI C. Exosomes in inflammation and role as biomarkers[J]. Clin Chim Acta, 2019, 488: 165-171. DOI: 10.1016/j.cca.2018.11.009.
    [4] Chinese Society of Infectious Diseases, Chinese Medical Association; Chinese Society of Hepatology, Chinese Medical Association. Guidelines for the prevention and treatment of chronic hepatitis B(version 2019)[J]. J Clin Hepatol, 2019, 35(12): 2648-2669. DOI: 10.3969/j.issn.1001-5256.2019.12.007.

    中华医学会感染病学分会, 中华医学会肝病学分会. 慢性乙型肝炎防治指南(2019年版)[J]. 临床肝胆病杂志, 2019, 35(12): 2648-2669. DOI: 10.3969/j.issn.1001-5256.2019.12.007.
    [5] Liver Failure and Artificial Liver Group, Chinese Society of Infectious Diseases, Chinese Medical Association; Severe Liver Disease and Artificial Liver Group, Chinese Society of Hepatology, Chinese Medical Association. Guideline for diagnosis and treatment of liver failure(2018)[J]. J Clin Hepatol, 2019, 35(1): 38-44. DOI: 10.3969/j.issn.1001-5256.2019.01.007.

    中华医学会感染病学分会肝衰竭与人工肝学组, 中华医学会肝病学分会重型肝病与人工肝学组. 肝衰竭诊治指南(2018年版)[J]. 临床肝胆病杂志, 2019, 35(1): 38-44. DOI: 10.3969/j.issn.1001-5256.2019.01.007.
    [6] GURUNATHAN S, KANG MH, JEYARAJ M, et al. Review of the isolation, characterization, biological function, and multifarious therapeutic approaches of exosomes[J]. Cells, 2019, 8(4): 307. DOI: 10.3390/cells8040307.
    [7] MORI MA, LUDWIG RG, GARCIA-MARTIN R, et al. Extracellular miRNAs: from biomarkers to mediators of physiology and disease[J]. Cell Metab, 2019, 30(4): 656-673. DOI: 10.1016/j.cmet.2019.07.011.
    [8] ZHANG J, LI S, LI L, et al. Exosome and exosomal microRNA: trafficking, sorting, and function[J]. Genomics Proteomics Bioinformatics, 2015, 13(1): 17-24. DOI: 10.1016/j.gpb.2015.02.001.
    [9] CHEN W, YAN ZH, WANG YM, et al. Genome-wide microarray-based analysis of miRNAs expression in patients with acute-on-chronic liver failure[J]. Hepatobiliary Pancreat Dis Int, 2014, 13(1): 32-39. DOI: 10.1016/s1499-3872(14)60004-7.
    [10] HU J, XU Y, HAO J, et al. MiR-122 in hepatic function and liver diseases[J]. Protein Cell, 2012, 3(5): 364-371. DOI: 10.1007/s13238-012-2036-3.
    [11] TANIMIZU N, KOBAYASHI S, ICHINOHE N, et al. Downregulation of miR122 by grainyhead-like 2 restricts the hepatocytic differentiation potential of adult liver progenitor cells[J]. Development, 2014, 141(23): 4448-4456. DOI: 10.1242/dev.113654.
    [12] TU WL, YOU LR, TSOU AP, et al. Pten haplodeficiency accelerates liver tumor growth in miR-122a-Null mice via expansion of periportal hepatocyte-like cells[J]. Am J Pathol, 2018, 188(11): 2688-2702. DOI: 10.1016/j.ajpath.2018.07.019.
    [13] KRAUSKOPF J, CAIMENT F, CLAESSEN SM, et al. Application of high-throughput sequencing to circulating microRNAs reveals novel biomarkers for drug-induced liver injury[J]. Toxicol Sci, 2015, 143(2): 268-276. DOI: 10.1093/toxsci/kfu232.
    [14] BAI S, NASSER MW, WANG B, et al. MicroRNA-122 inhibits tumorigenic properties of hepatocellular carcinoma cells and sensitizes these cells to sorafenib[J]. J Biol Chem, 2009, 284(46): 32015-32027. DOI: 10.1074/jbc.M109.016774.
    [15] JOPLING CL, YI M, LANCASTER AM, et al. Modulation of hepatitis C virus RNA abundance by a liver-specific microRNA[J]. Science, 2005, 309(5740): 1577-1581. DOI: 10.1126/science.1113329.
    [16] CHEN S, YANG L, PAN A, et al. Inhibitory effect on the hepatitis B cells through the regulation of miR-122-MAP3K2 signal pathway[J]. An Acad Bras Cienc, 2019, 91(2): e20180941. DOI: 10.1590/0001-3765201920180941.
    [17] WEN Y, PENG SF, FU L, et al. Serum levels of miRNA in patients with hepatitis B virus-associated acute-on-chronic liver failure[J]. Hepatobiliary Pancreat Dis Int, 2018, 17(2): 126-132. DOI: 10.1016/j.hbpd.2018.03.004.
    [18] WU L, NGUYEN LH, ZHOU K, et al. Precise let-7 expression levels balance organ regeneration against tumor suppression[J]. Elife, 2015, 4: e09431. DOI: 10.7554/eLife.09431.
    [19] MCDANIEL K, HUANG L, SATO K, et al. The let-7/Lin28 axis regulates activation of hepatic stellate cells in alcoholic liver injury[J]. J Biol Chem, 2017, 292(27): 11336-11347. DOI: 10.1074/jbc.M116.773291.
    [20] MATSUURA K, AIZAWA N, ENOMOTO H, et al. Circulating let-7 levels in serum correlate with the severity of hepatic fibrosis in chronic hepatitis C[J]. Open Forum Infect Dis, 2018, 5(11): ofy268. DOI: 10.1093/ofid/ofy268.
    [21] SANDHU GK, MCMILLIN M, FRAMPTON G, et al. Let-7f-dependent suppression of neuronal IGF1 by aberrant TGFβ1 signaling contributes to the neurological decline observed during acute liver failure[J]. J Gastroenterology, 2017, 152(5): S1066. DOI: 10.1016/s0016-5085(17)33601-6.
    [22] YANG S, CHEN Z, FAN D, et al. Retracted Article: MiR-182-5p and miR-96-5p increased hepatocellular carcinoma cell mobility, proliferation and cisplatin resistance partially by targeting RND3[J]. RSC Adv, 2018, 8(61): 34973-34983. DOI: 10.1039/c8ra07055e.
    [23] CHANDEL R, DAS A, CHAWLA YK, et al. Mo1477 Progression of hepatocellular carcinoma is associated with the up regulation of rno-miR-96/182/183 cluster in liver of wistar rats[J]. J Gastroenterology, 2016, 150(4): S1125. DOI: 10.1016/s0016-5085(16)33799-4
    [24] MANDAL R, HARDIN H, BAUS R, et al. Analysis of miR-96 and miR-133a expression in gastrointestinal neuroendocrine neoplasms[J]. Endocr Pathol, 2017, 28(4): 345-350. DOI: 10.1007/s12022-017-9504-5.
    [25] SHI Y, JIA M, XU L, et al. miR-96 and autophagy are involved in the beneficial effect of grape seed proanthocyanidins against high-fat-diet-induced dyslipidemia in mice[J]. Phytother Res, 2019, 33(4): 1222-1232. DOI: 10.1002/ptr.6318.
    [26] BAJAJ JS, REDDY KR, O'LEARY JG, et al. Serum levels of metabolites produced by intestinal microbes and lipid moieties independently associated with acute-on-chronic liver failure and death in patients with cirrhosis[J]. Gastroenterology, 2020, 159(5): 1715-1730. e12. DOI: 10.1053/j.gastro.2020.07.019.
  • 慢性乙型肝炎与HBV相关慢加急性肝衰竭患者血浆外泌体差异miRNA的生物信息学分析.pdf
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  258
  • HTML全文浏览量:  73
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-07
  • 录用日期:  2023-01-17
  • 出版日期:  2023-08-20
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回