中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

胰腺神经内分泌肿瘤微环境的形成机制及免疫/靶向治疗研究进展

杨佳妮 张海蓉

引用本文:
Citation:

胰腺神经内分泌肿瘤微环境的形成机制及免疫/靶向治疗研究进展

DOI: 10.3969/j.issn.1001-5256.2023.08.036
利益冲突声明:本文不存在任何利益冲突。
作者贡献声明:杨佳妮负责收集、分析文献,撰写论文; 张海蓉负责拟定写作思路,指导撰写文章并最后定稿。
详细信息
    通信作者:

    张海蓉,zhr919@sina.com (ORCID:0000-0002-9918-3673)

Research advances in the mechanism of tumor microenvironment and targeted therapy for pancreatic neuroendocrine tumor

More Information
    Corresponding author: ZHANG Hairong, zhr919@sina.com (ORCID: 0000-0002-9918-3673)
  • 摘要: 胰腺神经内分泌肿瘤微环境是由肿瘤细胞、免疫/免疫抑制细胞和细胞外基质成分等共同构建的促癌微环境,以免疫抑制为突出特征,不仅可以抑制抗肿瘤免疫反应、促进血管新生导致肿瘤细胞免疫逃逸和侵袭转移,也是患者对抗肿瘤治疗产生耐药的主要原因。因此,从胰腺神经内分泌肿瘤微环境出发,设计新的抗肿瘤治疗策略以逆转抑制性肿瘤微环境对提高胰腺神经内分泌肿瘤的疗效有重要意义。本文综述了胰腺神经内分泌肿瘤微环境的组成和作用及其靶向治疗的最新研究进展。

     

  • [1] DASARI A, SHEN C, HALPERIN D, et al. Trends in the incidence, prevalence, and survival outcomes in patients with neuroendocrine tumors in the United States[J]. JAMA Oncol, 2017, 3(10): 1335-1342. DOI: 10.1001/jamaoncol.2017.0589.
    [2] BUICKO JL, FINNERTY BM, ZHANG T, et al. Insights into the biology and treatment strategies of pancreatic neuroendocrine tumors[J]. Ann Pancreat Cancer, 2019, 2: 12. DOI: 10.21037/apc.2019.06.02.
    [3] DA SILVA A, BOWDEN M, ZHANG S, et al. Characterization of the neuroendocrine tumor immune microenvironment[J]. Pancreas, 2018, 47(9): 1123-1129. DOI: 10.1097/MPA.0000000000001150.
    [4] KRUG S, ABBASSI R, GRIESMANN H, et al. Therapeutic targeting of tumor-associated macrophages in pancreatic neuroendocrine tumors[J]. Int J Cancer, 2018, 143(7): 1806-1816. DOI: 10.1002/ijc.31562.
    [5] LIU M, ZHANG Y, CHEN L, et al. Myeloid-derived suppressor cells in gastroenteropancreatic neuroendocrine neoplasms[J]. Endocrine, 2021, 71(1): 242-252. DOI: 10.1007/s12020-020-02467-2.
    [6] CAI L, MICHELAKOS T, DESHPANDE V, et al. Role of tumor-associated macrophages in the clinical course of pancreatic neuroendocrine tumors (PanNETs)[J]. Clin Cancer Res, 2019, 25(8): 2644-2655. DOI: 10.1158/1078-0432.CCR-18-1401.
    [7] RYSCHICH E, AUTSCHBACH F, EISOLD S, et al. Expression of HLA class Ⅰ/Ⅱ antigens and T cell immune response in human neuroendocrine tumors of the pancreas[J]. Tissue Antigens, 2003, 62(1): 48-54. DOI: 10.1034/j.1399-0039.2003.00075.x.
    [8] de HOSSON LD, TAKKENKAMP TJ, KATS-UGURLU G, et al. Neuroendocrine tumours and their microenvironment[J]. Cancer Immunol Immunother, 2020, 69(8): 1449-1459. DOI: 10.1007/s00262-020-02556-1.
    [9] ALLEN E, JABOUILLE A, RIVERA LB, et al. Combined antiangiogenic and anti-PD-L1 therapy stimulates tumor immunity through HEV formation[J]. Sci Transl Med, 2017, 9(385): eaak9679. DOI: 10.1126/scitranslmed.aak9679.
    [10] ZHANG WH, WANG WQ, HAN X, et al. Infiltrating pattern and prognostic value of tertiary lymphoid structures in resected non-functional pancreatic neuroendocrine tumors[J]. J Immunother Cancer, 2020, 8(2): e001188. DOI: 10.1136/jitc-2020-001188.
    [11] XU SS, LI H, LI TJ, et al. Neutrophil extracellular traps and macrophage extracellular traps predict postoperative recurrence in resectable nonfunctional pancreatic neuroendocrine tumors[J]. Front Immunol, 2021, 12: 577517. DOI: 10.3389/fimmu.2021.577517.
    [12] ZHANG WH, WANG WQ, GAO HL, et al. Tumor-infiltrating neutrophils predict poor survival of non-functional pancreatic neuroendocrine tumor[J]. J Clin Endocrinol Metab, 2020, 105(7): dgaa196. DOI: 10.1210/clinem/dgaa196.
    [13] DEBIEN V, DAVIDSON G, BALTZINGER P, et al. Involvement of Neutrophils in Metastatic Evolution of Pancreatic Neuroendocrine Tumors[J]. Cancers (Basel), 2021, 13(11): 2771. DOI: 10.3390/cancers13112771.
    [14] HARNEY AS, KARAGIANNIS GS, PIGNATELLI J, et al. The selective Tie2 inhibitor rebastinib blocks recruitment and function of Tie2Hi macrophages in breast cancer and pancreatic neuroendocrine tumors[J]. Mol Cancer Ther, 2017, 16(11): 2486-2501. DOI: 10.1158/1535-7163.MCT-17-0241.
    [15] AKKARI L, GOCHEVA V, KESTER JC, et al. Distinct functions of macrophage-derived and cancer cell-derived cathepsin Z combine to promote tumor malignancy via interactions with the extracellular matrix[J]. Genes Dev, 2014, 28(19): 2134-2150. DOI: 10.1101/gad.249599.114.
    [16] BEAUCHAMP RD, COFFEY RJ Jr, LYONS RM, et al. Human carcinoid cell production of paracrine growth factors that can stimulate fibroblast and endothelial cell growth[J]. Cancer Res, 1991, 51(19): 5253-5260.
    [17] MARIATHASAN S, TURLEY SJ, NICKLES D, et al. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells[J]. Nature, 2018, 554(7693): 544-548. DOI: 10.1038/nature25501.
    [18] SVEJDA B, KIDD M, GIOVINAZZO F, et al. The 5-HT(2B) receptor plays a key regulatory role in both neuroendocrine tumor cell proliferation and the modulation of the fibroblast component of the neoplastic microenvironment[J]. Cancer, 2010, 116(12): 2902-2912. DOI: 10.1002/cncr.25049.
    [19] CUNY T, van KOETSVELD PM, MONDIELLI G, et al. Reciprocal interactions between fibroblast and pancreatic neuroendocrine tumor cells: putative impact of the tumor microenvironment[J]. Cancers (Basel), 2022, 14(14): 3481. DOI: 10.3390/cancers14143481.
    [20] KATZ SC, DONKOR C, GLASGOW K, et al. T cell infiltrate and outcome following resection of intermediate-grade primary neuroendocrine tumours and liver metastases[J]. HPB (Oxford), 2010, 12(10): 674-683. DOI: 10.1111/j.1477-2574.2010.00231.x.
    [21] KIM ST, HA SY, LEE S, et al. The impact of PD-L1 expression in patients with metastatic GEP-NETs[J]. J Cancer, 2016, 7(5): 484-489. DOI: 10.7150/jca.13711.
    [22] de REUVER PR, MEHTA S, GILL P, et al. Immunoregulatory forkhead box protein p3-positive lymphocytes are associated with overall survival in patients with pancreatic neuroendocrine tumors[J]. J Am Coll Surg, 2016, 222(3): 281-287. DOI: 10.1016/j.jamcollsurg.2015.12.008.
    [23] KOMI D, REDEGELD FA. Role of mast cells in shaping the tumor microenvironment[J]. Clin Rev Allergy Immunol, 2020, 58(3): 313-325. DOI: 10.1007/s12016-019-08753-w.
    [24] SOUCEK L, BUGGY JJ, KORTLEVER R, et al. Modeling pharmacological inhibition of mast cell degranulation as a therapy for insulinoma[J]. Neoplasia, 2011, 13(11): 1093-1100. DOI: 10.1593/neo.11980.
    [25] MO S, ZONG L, CHEN X, et al. High mast cell density predicts a favorable prognosis in patients with pancreatic neuroendocrine neoplasms[J]. Neuroendocrinology, 2022, 112(9): 845-855. DOI: 10.1159/000521651.
    [26] NABA A, CLAUSER KR, MANI DR, et al. Quantitative proteomic profiling of the extracellular matrix of pancreatic islets during the angiogenic switch and insulinoma progression[J]. Sci Rep, 2017, 7: 40495. DOI: 10.1038/srep40495.
    [27] GUADAGNO E, CAMPIONE S, PIGNATIELLO S, et al. Epithelial-mesenchymal transition proteins in neuroendocrine neoplasms: differential immunohistochemical expression in different sites and correlation with clinico-pathological features[J]. Diagnostics (Basel), 2020, 10(6): 351. DOI: 10.3390/diagnostics10060351.
    [28] JOYCE JA, FREEMAN C, MEYER-MORSE N, et al. A functional heparan sulfate mimetic implicates both heparanase and heparan sulfate in tumor angiogenesis and invasion in a mouse model of multistage cancer[J]. Oncogene, 2005, 24(25): 4037-4051. DOI: 10.1038/sj.onc.1208602.
    [29] HUNTER KE, PALERMO C, KESTER JC, et al. Heparanase promotes lymphangiogenesis and tumor invasion in pancreatic neuroendocrine tumors[J]. Oncogene, 2014, 33(14): 1799-1808. DOI: 10.1038/onc.2013.142.
    [30] JIAO H, ZENG L, ZHANG J, et al. THBS2, a microRNA-744-5p target, modulates MMP9 expression through CUX1 in pancreatic neuroendocrine tumors[J]. Oncol Lett, 2020, 19(3): 1683-1692. DOI: 10.3892/ol.2020.11273.
    [31] SHCHORS K, NOZAWA H, XU J, et al. Increased invasiveness of MMP-9-deficient tumors in two mouse models of neuroendocrine tumorigenesis[J]. Oncogene, 2013, 32(4): 502-513. DOI: 10.1038/onc.2012.60.
    [32] CARRASCO P, ZUAZO-GAZTELU I, CASANOVAS O. Sprouting strategies and dead ends in anti-angiogenic targeting of NETs[J]. J Mol Endocrinol, 2017, 59(1): R77-R91. DOI: 10.1530/JME-17-0029.
    [33] CUNY T, de HERDER W, BARLIER A, et al. Role of the tumor microenvironment in digestive neuroendocrine tumors[J]. Endocr Relat Cancer, 2018, 25(11): R519-R544. DOI: 10.1530/ERC-18-0025.
    [34] KEKLIKOGLOU I, KADIOGLU E, BISSINGER S, et al. Periostin limits tumor response to VEGFA inhibition[J]. Cell Rep, 2018, 22(10): 2530-2540. DOI: 10.1016/j.celrep.2018.02.035.
    [35] ALLEN E, WALTERS IB, HANAHAN D. Brivanib, a dual FGF/VEGF inhibitor, is active both first and second line against mouse pancreatic neuroendocrine tumors developing adaptive/evasive resistance to VEGF inhibition[J]. Clin Cancer Res, 2011, 17(16): 5299-5310. DOI: 10.1158/1078-0432.CCR-10-2847.
    [36] SONCINI M, CORNA G, MORESCO M, et al. 24-Hydroxycholesterol participates in pancreatic neuroendocrine tumor development[J]. Proc Natl Acad Sci USA, 2016, 113(41): E6219-E6227. DOI: 10.1073/pnas.1613332113.
    [37] XU J, SHEN L, BAI C, et al. Surufatinib in advanced pancreatic neuroendocrine tumours (SANET-p): a randomised, double-blind, placebo-controlled, phase 3 study[J]. Lancet Oncol, 2020, 21(11): 1489-1499. DOI: 10.1016/S1470-2045(20)30493-9.
    [38] CAPDEVILA J, FAZIO N, LOPEZ C, et al. Lenvatinib in patients with advanced grade 1/2 pancreatic and gastrointestinal neuroendocrine tumors: results of the phase Ⅱ TALENT trial (GETNE1509)[J]. J Clin Oncol, 2021, 39(20): 2304-2312. DOI: 10.1200/JCO.20.03368.
    [39] KULKE MH, OU FS, NIEDZWIECKI D, et al. Everolimus with or without bevacizumab in advanced pNET: CALGB 80701 (Alliance)[J]. Endocr Relat Cancer, 2022, 29(6): 335-344. DOI: 10.1530/ERC-21-0239.
    [40] GRANDE E, RODRIGUEZ-ANTONA C, LÓPEZ C, et al. Sunitinib and evofosfamide (TH-302) in systemic treatment-naïve patients with grade 1/2 metastatic pancreatic neuroendocrine tumors: The GETNE-1408 trial[J]. Oncologist, 2021, 26(11): 941-949. DOI: 10.1002/onco.13885.
    [41] AL-TOUBAH T, SCHELL MJ, CIVES M, et al. A phase Ⅱ study of ibrutinib in advanced neuroendocrine neoplasms[J]. Neuroendocrinology, 2020, 110(5): 377-383. DOI: 10.1159/000502383.
    [42] MEHNERT JM, BERGSLAND E, O'NEIL BH, et al. Pembrolizumab for the treatment of programmed death-ligand 1-positive advanced carcinoid or pancreatic neuroendocrine tumors: Results from the KEYNOTE-028 study[J]. Cancer, 2020, 126(13): 3021-3030. DOI: 10.1002/cncr.32883.
    [43] YAO JC, STROSBERG J, FAZIO N, et al. Spartalizumab in metastatic, well/poorly-differentiated neuroendocrine neoplasms[J]. Endocr Relat Cancer, 2021. DOI: 10.1530/ERC-20-0382.[Online ahead of print]
    [44] KLEIN O, KEE D, MARKMAN B, et al. Immunotherapy of ipilimumab and nivolumab in patients with advanced neuroendocrine tumors: a subgroup analysis of the CA209-538 clinical trial for rare cancers[J]. Clin Cancer Res, 2020, 26(17): 4454-4459. DOI: 10.1158/1078-0432.CCR-20-0621.
    [45] INOUE M, KIM M, INOUE T, et al. Oncolytic vaccinia virus injected intravenously sensitizes pancreatic neuroendocrine tumors and metastases to immune checkpoint blockade[J]. Mol Ther Oncolytics, 2022, 24: 299-318. DOI: 10.1016/j.omto.2021.12.016.
    [46] KAEMMERER D, PETER L, LUPP A, et al. Molecular imaging with 68Ga-SSTR PET/CT and correlation to immunohistochemistry of somatostatin receptors in neuroendocrine tumours[J]. Eur J Nucl Med Mol Imaging, 2011, 38(9): 1659-1668. DOI: 10.1007/s00259-011-1846-5.
    [47] MANDRIANI B, PELLÈ E, MANNAVOLA F, et al. Development of anti-somatostatin receptors CAR T cells for treatment of neuroendocrine tumors[J]. J Immunother Cancer, 2022, 10(6): e004854. DOI: 10.1136/jitc-2022-004854.
    [48] FENG Z, HE X, ZHANG X, et al. Potent suppression of neuroendocrine tumors and gastrointestinal cancers by CDH17CAR T cells without toxicity to normal tissues[J]. Nat Cancer, 2022, 3(5): 581-594. DOI: 10.1038/s43018-022-00344-7.
  • 加载中
计量
  • 文章访问数:  244
  • HTML全文浏览量:  62
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-26
  • 录用日期:  2022-11-29
  • 出版日期:  2023-08-20
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回