[1] |
YANG HQ, CHEN LL, LIU YH. A large-scale plasma proteome Mendelian randomization study identifies novel causal plasma proteins related to primary biliary cholangitis[J]. Front Immunol, 2023, 14: 1052616. DOI: 10.3389/fimmu.2023.1052616.
|
[2] |
YOU H, MA X, EFE C, et al. APASL clinical practice guidance: The diagnosis and management of patients with primary biliary cholangitis[J]. Hepatol Int, 2022, 16( 1): 1- 23. DOI: 10.1007/s12072-021-10276-6.
|
[3] |
AHOUSSOUGBEMEY MELE A, MAHMOOD R, OGBUAGU H, et al. Hyperlipidemia in the setting of primary biliary cholangitis: A case report and review of management strategies[J]. Cureus, 2022, 14( 11): e31411. DOI: 10.7759/cureus.31411.
|
[4] |
COLAPIETRO F, LLEO A, GENERALI E. Antimitochondrial antibodies: From bench to bedside[J]. Clin Rev Allergy Immunol, 2022, 63( 2): 166- 177. DOI: 10.1007/s12016-021-08904-y.
|
[5] |
QIAN Q, HE W, TANG R, et al. Implications of gut microbiota in autoimmune liver diseases[J]. Minerva Gastroenterol(Torino), 2023, 69( 1): 95- 106. DOI: 10.23736/S2724-5985.21.02860-9.
|
[6] |
ÖRNOLFSSON KT, OLAFSSON S, BERGMANN OM, et al. Using the Icelandic genealogical database to define the familial risk of primary biliary cholangitis[J]. Hepatology, 2018, 68( 1): 166- 171. DOI: 10.1002/hep.29675.
|
[7] |
SELMI C, MAYO MJ, BACH N, et al. Primary billiary cirrhosis in monozygotic twins: genetics, epigenetics, and environment[J]. Gastroenterology, 2004, 127( 2): 485- 492. DOI: 10.1053/j.gastro.2004.05.005.
|
[8] |
ALWABEL AH, PEEDIKAYIL M, ALNASSER S, et al. Efficacy of ursodeoxycholic acid for primary biliary cholangitis: Experience from a tertiary care centre in Saudi Arabia[J]. Saudi J Gastroenterol, 2023, 29( 2): 135- 140. DOI: 10.4103/sjg.sjg_445_21.
|
[9] |
GERUSSI A, CRISTOFERI L, CARBONE M, et al. The immunobiology of female predominance in primary biliary cholangitis[J]. J Autoimmun, 2018, 95: 124- 132. DOI: 10.1016/j.jaut.2018.10.015.
|
[10] |
GOLDEN LC, ITOH Y, ITOH N, et al. Parent-of-origin differences in DNA methylation of X chromosome genes in T lymphocytes[J]. PNAS, 2019, 116( 52): 26779- 26787. DOI: 10.1073/pnas.1910072116.
|
[11] |
CAO H, ZHU BK, QU Y, et al. Abnormal expression of ERα in cholangiocytes of patients with primary biliary cholangitis mediated intrahepatic bile duct inflammation[J]. Front Immunol, 2019, 10: 2815. DOI: 10.3389/fimmu.2019.02815.
|
[12] |
QIU F, TANG RQ, ZUO XB, et al. A genome-wide association study identifies six novel risk loci for primary biliary cholangitis[J]. Nat Commun, 2017, 8: 14828. DOI: 10.1038/ncomms14828.
|
[13] |
LI Y, LI ZQ, CHEN RL, et al. A regulatory variant at 19p13.3 is associated with primary biliary cholangitis risk and ARID3A expression[J]. Nat Commun, 2023, 14: 1732. DOI: 10.1038/s41467-023-37213-5.
|
[14] |
CORDELL HJ, FRYETT JJ, UENO K, et al. Corrigendum to:“An international genome-wide meta-analysis of primary biliary cholangitis: Novel risk loci and candidate drugs”[J Hepatol 75(2021) 572-581][J]. J Hepatol, 2023, 78( 4): 883. DOI: 10.1016/j.jhep.2022.12.001.
|
[15] |
DONG M, LI JX, TANG RQ, et al. Multiple genetic variants associated with primary biliary cirrhosis in a Han Chinese population[J]. Clin Rev Allergy Immunol, 2015, 48( 2-3): 316- 321. DOI: 10.1007/s12016-015-8472-0.
|
[16] |
HITOMI Y, NAKAMURA M. The genetics of primary biliary cholangitis: A GWAS and post-GWAS update[J]. Genes, 2023, 14( 2): 405. DOI: 10.3390/genes14020405.
|
[17] |
HUANG YQ. Recent advances in the diagnosis and treatment of primary biliary cholangitis[J]. World J Hepatol, 2016, 8( 33): 1419. DOI: 10.4254/wjh.v8.i33.1419.
|
[18] |
JOSHITA S, UMEMURA T, TANAKA E, et al. Genetics and epigenetics in the pathogenesis of primary biliary cholangitis[J]. Clin J Gastroenterol, 2018, 11( 1): 11- 18. DOI: 10.1007/s12328-017-0799-z.
|
[19] |
CHUNG BK, GUEVEL BT, REYNOLDS GM, et al. Phenotyping and auto-antibody production by liver-infiltrating B cells in primary sclerosing cholangitis and primary biliary cholangitis[J]. J Autoimmun, 2017, 77: 45- 54. DOI: 10.1016/j.jaut.2016.10.003.
|
[20] |
DARLAY R, AYERS KL, MELLS GF, et al. Amino acid residues in five separate HLA genes can explain most of the known associations between the MHC and primary biliary cholangitis[J]. PLoS Genet, 2018, 14( 12): e1007833. DOI: 10.1371/journal.pgen.1007833.
|
[21] |
LIU X, INVERNIZZI P, LU Y, et al. Genome-wide meta-analyses identify three loci associated with primary biliary cirrhosis[J]. Nat Genet, 2010, 42( 8): 658- 660. DOI: 10.1038/ng.627.
|
[22] |
WANG C, ZHENG XD, TANG RQ, et al. Fine mapping of the MHC region identifies major independent variants associated with Han Chinese primary biliary cholangitis[J]. J Autoimmun, 2020, 107: 102372. DOI: 10.1016/j.jaut.2019.102372.
|
[23] |
GERUSSI A, CARBONE M, CORPECHOT C, et al. The genetic architecture of primary biliary cholangitis[J]. Eur J Med Genet, 2021, 64( 9): 104292. DOI: 10.1016/j.ejmg.2021.104292.
|
[24] |
LI YN, LIU X, WANG Y, et al. Novel HLA-DRB1 alleles contribute risk for disease susceptibility in primary biliary cholangitis[J]. Dig Liver Dis, 2022, 54( 2): 228- 236. DOI: 10.1016/j.dld.2021.04.010.
|
[25] |
TANAKA A, LEUNG PSC, GERSHWIN ME. The genetics of primary biliary cholangitis[J]. Curr Opin Gastroenterol, 2019, 35( 2): 93- 98. DOI: 10.1097/MOG.0000000000000507.
|
[26] |
CHOW IT, JAMES EA, GATES TJ, et al. Differential binding of pyruvate dehydrogenase complex-E2 epitopes by DRB1*08∶01 and DRB1*11∶01 is predicted by their structural motifs and correlates with disease risk[J]. J Immunol, 2013, 190( 9): 4516- 4524. DOI: 10.4049/jimmunol.1202445.
|
[27] |
HUANG CY, ZHANG HP, HAN WJ, et al. Disease predisposition of human leukocyte antigen class II genes influences the gut microbiota composition in patients with primary biliary cholangitis[J]. Front Immunol, 2022, 13: 984697. DOI: 10.3389/fimmu.2022.984697.
|
[28] |
GUO F, HAO YA, ZHANG L, et al. Asthma susceptibility gene ORMDL3 promotes autophagy in human bronchial epithelium[J]. Am J Respir Cell Mol Biol, 2022, 66( 6): 661- 670. DOI: 10.1165/rcmb.2021-0305oc.
|
[29] |
JAMES BN, WEIGEL C, GREEN CD, et al. Neutrophilia in severe asthma is reduced in Ormdl3 overexpressing mice[J]. FASEB J, 2023, 37( 3): e22799. DOI: 10.1096/fj.202201821R.
|
[30] |
CHEN R, MICHAELOUDES C, LIANG YM, et al. ORMDL3 regulates cigarette smoke-induced endoplasmic reticulum stress in airway smooth muscle cells[J]. J Allergy Clin Immunol, 2022, 149( 4): 1445- 1457. e 5. DOI: 10.1016/j.jaci.2021.09.028.
|
[31] |
XIANG BY, DENG CY, QIU F, et al. Single cell sequencing analysis identifies genetics-modulated ORMDL3+ cholangiocytes having higher metabolic effects on primary biliary cholangitis[J]. J Nanobiotechnol, 2021, 19( 1): 1- 21. DOI: 10.1186/s12951-021-01154-2.
|
[32] |
SCHMIEDEL BJ, SEUMOIS G, SAMANIEGO-CASTRUITA D, et al. 17q21 asthma-risk variants switch CTCF binding and regulate IL-2 production by T cells[J]. Nat Commun, 2016, 7: 13426. DOI: 10.1038/ncomms13426.
|
[33] |
ZHANG YT, ZENG WH, XIA YM. TWEAK/Fn14 axis is an important player in fibrosis[J]. J Cell Physiol, 2021, 236( 5): 3304- 3316. DOI: 10.1002/jcp.30089.
|
[34] |
POVEDA J, VÁZQUEZ-SÁNCHEZ S, SANZ AB, et al. TWEAK-Fn14as a common pathway in the heart and the kidneys in cardiorenal syndrome[J]. J Pathol, 2021: path. 5631. DOI: 10.1002/path.5631.
|
[35] |
PASCOE AL, JOHNSTON AJ, MURPHY RM. Controversies in TWEAK-Fn14 signaling in skeletal muscle atrophy and regeneration[J]. Cell Mol Life Sci, 2020, 77( 17): 3369- 3381. DOI: 10.1007/s00018-020-03495-x.
|
[36] |
LIAO M, LIAO JW, QU JQ, et al. Hepatic TNFRSF12A promotes bile acid-induced hepatocyte pyroptosis through NFκB/Caspase-1/GSDMD signaling in cholestasis[J]. Cell Death Discov, 2023, 9: 26. DOI: 10.1038/s41420-023-01326-z.
|
[37] |
WANG GY, GARCIA V, LEE J, et al. Nrf2 deficiency causes hepatocyte dedifferentiation and reduced albumin production in an experimental extrahepatic cholestasis model[J]. PLoS One, 2022, 17( 6): e0269383. DOI: 10.1371/journal.pone.0269383.
|
[38] |
WANG N, CHEN P, SONG Y, et al. CD226 deficiency attenuates the homeostasis and suppressive capacity of Tr1 cells[J]. Mol Immunol, 2021, 132: 192- 198. DOI: 10.1016/j.molimm.2021.01.002.
|
[39] |
BAI LF, JIANG JY, LI H, et al. Role of CD226 Rs763361 polymorphism in susceptibility to multiple autoimmune diseases[J]. Immunol Investig, 2020, 49( 8): 926- 942. DOI: 10.1080/08820139.2019.1703737.
|
[40] |
CORDELL HJ, FRYETT JJ, UENO K, et al. An international genome-wide meta-analysis of primary biliary cholangitis: Novel risk loci and candidate drugs[J]. J Hepatol, 2021, 75( 3): 572- 581. DOI: 10.1016/j.jhep.2021.04.055.
|
[41] |
TANAKA A, LEUNG PSC, YOUNG HA, et al. Therapeutic and immunological interventions in primary biliary cholangitis: From mouse models to humans[J]. Arch Med Sci, 2018, 14( 4): 930- 940. DOI: 10.5114/aoms.2017.70995.
|
[42] |
SUN QN, WANG QA, FENG N, et al. The expression and clinical significance of serum IL-17 in patients with primary biliary cirrhosis[J]. Ann Transl Med, 2019, 7( 16): 389. DOI: 10.21037/atm.2019.07.100.
|
[43] |
DENG CW, LI WL, FEI YY, et al. Imbalance of the CD226/TIGIT immune checkpoint is involved in the pathogenesis of primary biliary cholangitis[J]. Front Immunol, 2020, 11: 1619. DOI: 10.3389/fimmu.2020.01619.
|
[44] |
DOUGALL WC, KURTULUS S, SMYTH MJ, et al. TIGIT and CD96: New checkpoint receptor targets for cancer immunotherapy[J]. Immunol Rev, 2017, 276( 1): 112- 120. DOI: 10.1111/imr.12518.
|
[45] |
ADAM L, ZOLDAN K, HOFMANN M, et al. Follicular T helper cell signatures in primary biliary cholangitis and primary sclerosing cholangitis[J]. Hepatol Commun, 2018, 2( 9): 1051- 1063. DOI: 10.1002/hep4.1226.
|
[46] |
LI YY, WANG WB, TANG LB, et al. Chemokine(C-X-C motif) ligand 13 promotes intrahepatic chemokine(C-X-C motif) receptor 5+ lymphocyte homing and aberrant B-cell immune responses in primary biliary cirrhosis[J]. Hepatology, 2015, 61( 6): 1998- 2007. DOI: 10.1002/hep.27725.
|
[47] |
ZHOU ZQ, TONG DN, GUAN J, et al. Circulating follicular helper T cells presented distinctively different responses toward bacterial antigens in primary biliary cholangitis[J]. Int Immunopharmacol, 2017, 51: 76- 81. DOI: 10.1016/j.intimp.2017.08.004.
|
[48] |
CIRULLI ET, GOLDSTEIN DB. Uncovering the roles of rare variants in common disease through whole-genome sequencing[J]. Nat Rev Genet, 2010, 11( 6): 415- 425. DOI: 10.1038/nrg2779.
|
[49] |
KUKSA PP, GREENFEST-ALLEN E, CIFELLO J, et al. Scalable approaches for functional analyses of whole-genome sequencing non-coding variants[J]. Hum Mol Genet, 2022, 31( R1): R62- R72. DOI: 10.1093/hmg/ddac191.
|
[50] |
HIRSCHFIELD GM, CHAPMAN RW, KARLSEN TH, et al. The genetics of complex cholestatic disorders[J]. Gastroenterology, 2013, 144( 7): 1357- 1374. DOI: 10.1053/j.gastro.2013.03.053.
|