[1] BANKS PA, BOLLEN TL, DERVENIS C, et al. Classification of acute pancreatitis—2012:Revision of the Atlanta classification and definitions by international consensus[J]. Gut, 2013, 62 (1) :102-111.
|
[2] SALVADOR P, JAVIER P, LUIS S, et al. Redox signaling in acute pancreatitis[J]. Redox Biol, 2015, 5 (2) :1-14.
|
[3] YANG S, IMAMURA Y, JENKINS RW, et al. Autophagy inhibition dysregulates TBK1 signaling and promotes pancreatic inflammation[J]. Cancer Immunol Res, 2016, 4 (6) :520-530.
|
[4] CIECHANOVER A. Proteolysis:From the lysosome to ubiquitin and the proteasome[J]. Nat Rev Mol Cell Biol, 2005, 6 (1) :79-87.
|
[5] GLICK D, BARTH S, MACLEOD KF. Autophagy:Cellular and molecular mechanisms[J]. J Pathol, 2010, 221 (1) :3-12.
|
[6] KAUSHIK S, BANDYOPADHYAY U, SRIDHAR S, et al. Chaperone-mediated autophagy at a glance[J]. J Cell Sci, 2011, 124 (4) :495-499.
|
[7] MIZUSHIMA N, YOSHIMORI T, OHSUMI Y. The role of Atg proteins in autophagosome formation[J]. Annu Rev Cell Dev Biol, 2011, 27 (1) :107-132.
|
[8] SAFTIG P, KLUMPERMAN J. Lysosome biogenesis and lysosomal membrane proteins:Trafficking meets function[J]. Nat Rev Mol Cell Biol, 2009, 10 (9) :623-635.
|
[9] BRAULKE T, BONIFACINO JS. Sorting of lysosomal proteins[J]. Biochim Biophys Acta, 2009, 1793 (4) :605-614.
|
[10] STAPPENBECK TS, RIOUX JD, MIZOGUCHI A, et al. Crohn disease:A current perspective on genetics, autophagy and immunity[J]. Autophagy, 2011, 7 (4) :355-374.
|
[11] KLIONSKY DJ, ABDELMOHSEN K, ABE A, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition) [J]. Autophagy, 2016, 12 (1) :1-222.
|
[12] GUKOVSKY I, GUKOVSKAYA AS. Impaired autophagy underlies key pathological responses of acute pancreatitis[J]. Autophagy, 2010, 6 (3) :428-429.
|
[13] GUKOVSKY I, PANDOL SJ, MARENINOVA OA, et al. Impaired autophagy and organellar dysfunction in pancreatitis[J]. J Gastroenterol Hepatol, 2012, 27 (2) :27-32.
|
[14] MARENINOVA OA, HERMANN K, FRENCH SW, et al. Impaired autophagic flux mediates acinar cell vacuole formation and trypsinogen activation in rodent models of acute pancreatitis[J]. J Clin Invest, 2009, 119 (11) :3340-3355.
|
[15] KLAUSS S, SCHORN S, TELLER S, et al. Genetically induced vs. classical animal models of chronic pancreatitis:A critical comparison[J]. FASEB J, 2018.[Epub ahead of print].
|
[16] IWAHASHI K, HIKITA H, MAKINO Y, et al. Autophagy impairment in pancreatic acinar cells causes zymogen granule accumulation and pancreatitis[J]. Biochem Biophys Res Commun, 2018, 503 (4) :2576-2582.
|
[17] MARENINOVA OA, SENDLER M, MALLA SR, et al. Lysosome associated membrane proteins maintain pancreatic acinar cell homeostasis:LAMP-2 deficient mice develop pancreatitis[J]. Cell Mol Gastroenterol Hepatol, 2015, 1 (6) :678-694.
|
[18] ZHU HW, YU X, ZHU SH, et al. The fusion of autophagosome with lysosome is impaired in L-arginine-induced acute pancreatitis[J]. Int J Clin Exp Pathol, 2015, 8 (9) :11164-11170.
|
[19] STEER ML. Early events in acute pancreatitis[J]. Baillieres Best Pract Res Clin Gastroenterol, 1999, 13 (2) :213-225.
|
[20] BOONEN M, van MEEL E, OORSCHOT V, et al. Vacuolization of mucolipidosis type II mouse exocrine gland cells represents accumulation of autolysosomes[J]. Mol Biol Cell, 2011, 22 (8) :1135-1147.
|
[21] GUKOVSKY I, LI N, TODORIC J, et al. Inflammation, autophagy, and obesity:Common features in the pathogenesis of pancreatitis and pancreatic cancer[J]. Gastroenterology, 2013, 144 (6) :1199-1209.
|
[22] HASHIMOTO D, OHMURAYA M, HIROTA M, et al. Involvement of autophagy in trypsinogen activation within the pancreatic acinar cells[J]. J Cell Biol, 2008, 181 (7) :1065-1072.
|
[23] SAH RP, DUDEJA V, DAWRA RK, et al. Cerulein-induced chronic pancreatitis does not require intra-acinar activation of trypsinogen in mice[J]. Gastroenterology, 2013, 144 (5) :1076-1085.
|
[24] VOJO D, TATSUYA S, SHIZUO A. Autophagy in infection, inflammation, and immunity[J]. Nat Rev Immunol, 2013, 13 (10) :722-737.
|
[25] FENG Y, CUI Y, GAO JL, et al. Resveratrol attenuates neuronal autophagy and inflammatory injury by inhibiting the TLR4/NF-κB signaling pathway in experimental traumatic brain injury[J]. Int J Mol Med, 2016, 37 (4) :921-930.
|
[26] YANG S, BING M, CHEN F, et al. Autophagy regulation by the nuclear factorκB signal axis in acute pancreatitis[J]. Pancreas, 2012, 41 (3) :367-373.
|
[27] WANG X, ZHOU G, LIU C, et al. Acanthopanax versus 3-Methyladenine ameliorates sodium taurocholate-induced severe acute pancreatitis by inhibiting the autophagic pathway in rats[J]. Mediators Inflamm, 2016, 2016:8369704.
|
[28] WAN J, CHEN J, WU D, et al. Regulation of autophagy affects the prognosis of mice with severe acute pancreatitis[J].Dig Dis Sci, 2018, 63 (10) :2639-2650.
|
[29] HUANG L, JIANG Y, SUN Z, et al. Autophagy strengthens intestinal mucosal barrier by attenuating oxidative stress in severe acute pancreatitis[J]. Dig Dis Sci, 2018, 63 (4) :910-919.
|
[30] GUKOVSKAYA AS, GUKOVSKY I. Autophagy and pancreatitis[J]. Am J Physiol Gastrointest Liver Physiol, 2012, 303 (9) :g993-g1003.
|
[31] MEISTER T, NIEHUES R, HAHN D, et al. Missorting of cathepsin B into the secretory compartment of CI-MPR/IGFIIdeficient mice does not induce spontaneous trypsinogen activation but leads to enhanced trypsin activity during experimental pancreatitis—without affecting disease severity[J]. J Physiol Pharmacol, 2010, 61 (5) :565-575.
|
[32] WAN JH, CHEN J, WU DY, et al. Regulation of autophagy affects the prognosis of mice with severe acute pancreatitis[J].Dig Dis Sci, 2018, 63 (10) :2639-2650.
|
[33] SONG ZG, HUANG YM, LIU C, et al. miR-352 participates in the regulation of trypsinogen activation in pancreatic acinar cells by influencing the function of autophagic lysosomes[J].Oncotarget, 2018, 9 (13) :10868-10879.
|
[34] ZHU MD, LUO YQ. Research advances in integrated traditional Chinese and Western medicine therapy for severe acute pancreatitis[J]. J Clin Hepatol, 2017, 33 (1) :188-193. (in Chinese) 朱美冬, 罗运权.中西医治疗重症急性胰腺炎的研究进展[J].临床肝胆病杂志, 2017, 33 (1) :188-193.
|
[35] YU XZ, LI CY, SONG HC, et al. Emodin attenuates autophagy response to protect the pancreas from acute pancreatitis failure[J]. Pancreas, 2018, 47 (7) :892-897.
|
[36] WANG XH, ZHOU GX, LIU C, et al. Acanthopanax versus 3-methyladenine ameliorates sodium taurocholate-induced severe acute pancreatitis by inhibiting the autophagic pathway in rats[J]. Mediators Inflamm, 2016, 2016:8369704.
|