[1] BHUSHAN B, APTE U. Liver regeneration after acetaminophen hepatotoxicity:Mechanisms and therapeutic opportunities[J].Am J Pathol, 2019, 189 (4) :719-729.
|
[2] SHEN T, HUANG X, WANG YY, et al. Current status of epidemiological study on drug-induced liver injury in China[J]. J Clin Hepatol, 2018, 34 (6) :1152-1155. (in Chinese) 沈弢, 黄昕, 王誉雅, 等.我国药物性肝损伤流行病学研究现状[J].临床肝胆病杂志, 2018, 34 (6) :1152-1155.
|
[3] IASELLA CJ, JOHNSON HJ, DUNN MA. Adverse drug reactions:Type A (intrinsic) or type B (idiosyncratic) [J]. Clin Liver Dis, 2017, 21 (1) :73-87.
|
[4] LEE WM. Acetaminophen (APAP) hepatotoxicity-Isn't it time for APAP to go away?[J]. J Hepatol, 2017, 67 (6) :1324-1331.
|
[5] JOZWIAK-BEBENISTA M, NOWAK JZ. Paracetamol:Mechanism of action, applications and safety concern[J]. Acta Pol Pharm, 2014, 71 (1) :11-23.
|
[6] DART RC, BAILEY E. Does therapeutic use of acetaminophen cause acute liver failure?[J]. Pharmacotherapy, 2007, 27 (9) :1219-1230.
|
[7] PEZZIA C, SANDERS C, WELCH S, et al. Psychosocial and behavioral factors in acetaminophen-related acute liver failure and liver injury[J]. J Psychosom Res, 2017, 101:51-57.
|
[8] MITCHELL JR, JOLLOW DJ, POTTER WZ, et al. Acetaminophen-induced hepatic necrosis. IV. Protective role of glutathione[J]. J Pharmacol Exp Ther, 1973, 187 (1) :211-217.
|
[9] COEN M. Metabolic phenotyping applied to pre-clinical and clinical studies of acetaminophen metabolism and hepatotoxicity[J]. Drug Metab Rev, 2015, 47 (1) :29-44.
|
[10] SUBRAMANYA SB, VENKATARAMAN B, MEERAN MFN, et al. Therapeutic potential of plants and plant derived phytochemicals against acetaminophen-induced liver injury[J].Int Mol Sci, 2018, 19 (12) :67-71
|
[11] SAITO C, ZWINGMANN C, JAESCHKE H. Novel mechanisms of protection against acetaminophen hepatotoxicity in mice by glutathione and N-acetylcysteine[J]. Hepatology, 2010, 51 (1) :246-254.
|
[12] ATHERSUCH TJ, ANTOINE DJ, BOOBIS AR, et al. Paracetamol metabolism, hepatotoxicity, biomarkers and therapeutic interventions:A perspective[J]. Toxicol Res, 2018, 7 (3) :347-357.
|
[13] DUAN L, RAMACHANDRAN A, AKAKPO JY, et al. Role of extracellular vesicles in release of protein adducts after acetaminophen-induced liver injury in mice and humans[J].Toxicol Lett, 2019, 301 (1) :25-32.
|
[14] JAESCHKE H, MCGILL MR. Cytochrome P450-derived versus mitochondrial oxidant stress in acetaminophen hepatotoxicity[J]. Toxicol Lett, 2015, 235 (3) :216-217.
|
[15] BARBIER-TORRES L, IRUZUBIETA P, FERNANDEZ-RAMOS D, et al. The mitochondrial negative regulator MCJ is a therapeutic target for acetaminophen-induced liver injury[J]. Nat Commun, 2017, 8 (1) :2068.
|
[16] JAESCHKE H, RAMACHANDRAN A. Oxidant stress and lipid peroxidation in acetaminophen hepatotoxicity[J]. React Oxyg Species, 2018, 5 (15) :145-158.
|
[17] JAESCHKE H. Acetaminophen:Dose-dependent drug hepatotoxicity and acute liver failure in patients[J]. Dig Dis, 2015, 33 (4) :464-471.
|
[18] MCGILL MR, JAESCHKE H. Metabolism and disposition of acetaminophen:Recent advances in relation to hepatotoxicity and diagnosis[J]. Pharm Res, 2013, 30 (9) :2174-2187.
|
[19] XIE Y, MCGILL MR, DU K, et al. Mitochondrial protein adducts formation and mitochondrial dysfunction during N-acetyl-m-aminophenol (AMAP) -induced hepatotoxicity in primary human hepatocytes[J]. Toxicol Appl Pharmacol, 2015, 289 (2) :213-222.
|
[20] YAN M, HUO Y, YIN S, et al. Mechanisms of acetaminophen-induced liver injury and its implications for therapeutic interventions[J]. Redox Biol, 2018, 17 (2) :74-83.
|
[21] RAMACHANDRAN A, JAESCHKE H. Mechanisms of acetaminophen hepatotoxicity and their translation to the human pathophysiology[J]. J Clin Transl Res, 2017, 3 (Suppl 1) :157-169.
|
[22] ZHANG J, MIN RWM, LE K, et al. The role of MAP2 kinases and p38 kinase in acute murine liver injury models[J]. Cell Death Dis, 2017, 8 (6) :e2903.
|
[23] ZAI W, CHEN W, LUAN J, et al. Dihydroquercetin ameliorated acetaminophen-induced hepatic cytotoxicity via activating JAK2/STAT3 pathway and autophagy[J]. Applied Microbiol Biotechnol, 2018, 102 (3) :1443-1453.
|
[24] ZHANG YF, HE W, ZHANG C, et al. Role of receptor interacting protein (RIP) 1 on apoptosis-inducing factor-mediated necroptosis during acetaminophen-evoked acute liver failure in mice[J]. Toxicol Lett, 2014, 225 (3) :445-453.
|
[25] SHAN S, SHEN Z, SONG F. Autophagy and acetaminophen-induced hepatotoxicity[J]. Arch Toxicol, 2018, 225 (3) :325-333.
|
[26] MIZUSHIMA N, KOMATSU M. Autophagy:Renovation of cells and tissues[J]. Cell, 2011, 147 (4) :728-741.
|
[27] NI HM, MCGILL MR, CHAO X, et al. Removal of acetaminophen protein adducts by autophagy protects against acetaminophen-induced liver injury in mice[J]. J Hepatol, 2016, 65 (2) :354-362.
|
[28] HAMACHER-BRADY A, BRADY NR. Mitophagy programs:Mechanisms and physiological implications of mitochondrial targeting by autophagy[J]. Cell Mol Life Sci, 2016, 73 (4) :775-795.
|
[29] WANG H, NI HM, CHAO X, et al. Double deletion of PINK1and Parkin impairs hepatic mitophagy and exacerbates acetaminophen-induced liver injury in mice[J]. Redox Biol, 2019, 22 (10) :1148.
|
[30] GAO Y, CHU S, ZHANG Z, et al. Early stage functions of mitochondrial autophagy and oxidative stress in acetaminophen-induced liver injury[J]. J Cell Biochem, 2017, 118 (10) :3130-3141.
|
[31] NI HM, BOCKUS A, BOGGESS N, et al. Activation of autophagy protects against acetaminophen-induced hepatotoxicity[J]. Hepatology, 2012, 55 (1) :222-232.
|
[32] YANG R, TONNESSEEN TI. DAMPs and sterile inflammation in drug hepatotoxicity[J]. Hepatology Int, 2019, 13 (1) :42-50.
|
[33] KUBES P, MEHAL WZ. Sterile inflammation in the liver[J].Gastroenterology, 2012, 143 (5) :1158-1172.
|
[34] ZHANG C, FENG J, DU J, et al. Macrophage-derived IL-1alpha promotes sterile inflammation in a mouse model of acetaminophen hepatotoxicity[J]. Cell Mol Immunol, 2018, 15 (11) :973-982.
|
[35] WOOLBRIGHT BL, JAESCHKE H. Role of the inflammasome in acetaminophen-induced liver injury and acute liver failure[J]. J Hepatol, 2017, 66 (4) :836-848.
|
[36] WILLIAMS CD, FARHOOD A, JAESCHKE H. Role of caspase-1 and interleukin-1beta in acetaminophen-induced hepatic inflammation and liver injury[J]. Toxicol Appl Pharmacol, 2010, 247 (3) :169-178.
|
[37] WILLIAMS CD, ANTOINE DJ, SHAW PJ, et al. Role of the Nalp3inflammasome in acetaminophen-induced sterile inflammation and liver injury[J]. Toxicol Appl Pharmacol, 2011, 252 (3) :289-297.
|
[38] ALVARENGA DM, MATTOS MS, LOPES ME, et al. Paradoxical role of matrix metalloproteinases in liver injury and regeneration after sterile acute hepatic failure[J]. Cells, 2018, 7 (12) :211-220.
|
[39] WOOLBRIGHT BL, JAESCHKE H. Mechanisms of inflammatory liver injury and drug-induced hepatotoxicity[J]. Curr Pharmacol Rep, 2018, 4 (5) :346-357.
|
[40] WILLIAMS CD, BAJT ML, SHARPE MR, et al. Neutrophil activation during acetaminophen hepatotoxicity and repair in mice and humans[J]. Toxicol Appl Pharmacol, 2014, 275 (2) :122-133.
|
[41] BOURDI M, MASUBUCHI Y, REILLY TP, et al. Protection against acetaminophen-induced liver injury and lethality by interleukin 10:Role of inducible nitric oxide synthase[J].Hepatology, 2002, 35 (2) :289-298.
|
[42] TRIANTAFYLLOU E, WOOLLARD KJ, MCPHAIL MJW, et al.The role of monocytes and macrophages in acute and acuteon-chronic liver failure[J]. Front Immunol, 2018, 9:2948.
|
[43] ANTONIADES CG, QUAGLIA A, TAAMS LS, et al. Source and characterization of hepatic macrophages in acetaminophen-induced acute liver failure in humans[J]. Hepatology, 2012, 56 (2) :735-746.
|
[44] MCGILL MR, YAN HM, RAMACHANDRAN A, et al. HepaRG cells:A human model to study mechanisms of acetaminophen hepatotoxicity[J]. Hepatology, 2011, 53 (3) :974-982.
|
[45] XIE Y, MCGILL MR, DORKO K, et al. Mechanisms of acetaminophen-induced cell death in primary human hepatocytes[J]. Toxicol Appl Pharmacol, 2014, 279 (3) :266-274.
|
[46] MCGILL MR, LEBOFSKY M, NORRIS HR, et al. Plasma and liver acetaminophen-protein adduct levels in mice after acetaminophen treatment:Dose-response, mechanisms, and clinical implications[J]. Toxicol Appl Pharmacol, 2013, 269 (3) :240-249.
|
[47] MCGILL MR, WILLIAMS CD, XIE Y, et al. Acetaminopheninduced liver injury in rats and mice:Comparison of protein adducts, mitochondrial dysfunction, and oxidative stress in the mechanism of toxicity[J]. Toxicol Appl Pharmacol, 2012, 264 (3) :387-394.
|
[48] HAN D, DARA L, WIN S, et al. Regulation of drug-induced liver injury by signal transduction pathways:Critical role of mitochondria[J]. Trends Pharmacol Sci, 2013, 34 (4) :243-253.
|
[49] MCGILL MR, STAGGS VS, SHARPE MR, et al. Serum mitochondrial biomarkers and damage-associated molecular patterns are higher in acetaminophen overdose patients with poor outcome[J]. Hepatology, 2014, 60 (4) :1336-1345.
|
[50] GENG WJ, LIU H, DING HG. Recent advances in drug-induced liver injury:Potential mechanisms, pathological features, and biomarkers[J]. J Clin Hepatol, 2019, 35 (4) :925-929. (in Chinese) 耿文静, 刘晖, 丁惠国.药物性肝损伤的潜在机制、病理特点及生物标志物[J].临床肝胆病杂志, 2019, 35 (4) :925-929.
|