中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R
Volume 37 Issue 8
Aug.  2021
Turn off MathJax
Article Contents

Role of competing endogenous RNA in the development and progression of hepatocellular carcinoma

DOI: 10.3969/j.issn.1001-5256.2021.08.039
Research funding:

Natural Science Foundation of Guangxi Province (2018GXNSFAA281187)

  • Received Date: 2021-01-01
  • Accepted Date: 2021-02-09
  • Published Date: 2021-08-20
  • The theory of competing endogenous RNA (ceRNA) is one of the key theories in explaining gene expression regulation and biological function. This mechanism combines different RNA molecules and provides new insights into the interaction between RNAs and RNA regulatory networks. More and more studies have confirmed that ceRNA regulation plays an important role in the development and progression of tumor, most of which are mainly based on lncRNA-miRNA-mRNA and circRNA-miRNA-mRNA regulatory networks. Studies have also shown that a variety of ceRNA regulatory networks are involved in the proliferation, invasion, and migration of tumor cells, drug resistance, angiogenesis, and tumor immunity, thus affecting tumor progression. This article elaborates on the regulatory mechanism of ceRNA, reviews the research advances in the role of ceRNA regulation in the development and progression of hepatocellular carcinoma, and discusses the ceRNA regulatory networks that play a key role in this process.

     

  • loading
  • [1]
    YING Q, WANG Y. Global prevalence and trend of liver cancer[J]. China Cancer, 2020, 29(3): 185-191. DOI: 10.11735/j.issn.1004-0242.2020.03.A005.

    应倩, 汪媛. 肝癌流行现况和趋势分析[J]. 中国肿瘤, 2020, 29(3): 185-191. DOI: 10.11735/j.issn.1004-0242.2020.03.A005.
    [2]
    SALMENA L, POLISENO L, TAY Y, et al. A ceRNA hypothesis: The Rosetta Stone of a hidden RNA language?[J]. Cell, 2011, 146(3): 353-358. DOI: 10.1016/j.cell.2011.07.014.
    [3]
    TAY Y, RINN J, PANDOLFI PP. The multilayered complexity of ceRNA crosstalk and competition[J]. Nature, 2014, 505(7483): 344-352. DOI: 10.1038/nature12986.
    [4]
    BOSSON AD, ZAMUDIO JR, SHARP PA. Endogenous miRNA and target concentrations determine susceptibility to potential ceRNA competition[J]. Mol Cell, 2014, 56(3): 347-359. DOI: 10.1016/j.molcel.2014.09.018.
    [5]
    THOMSON DW, DINGER ME. Endogenous microRNA sponges: Evidence and controversy[J]. Nat Rev Genet, 2016, 17(5): 272-283. DOI: 10.1038/nrg.2016.20.
    [6]
    LIU T, ZU CH, WANG SS, et al. PIK3C2A mRNA functions as a miR-124 sponge to facilitate CD151 expression and enhance malignancy of hepatocellular carcinoma cells[J]. Oncotarget, 2016, 7(28): 43376-43389. DOI: 10.18632/oncotarget.9716.
    [7]
    YANG ZP, MA HS, WANG SS, et al. LAMC1 mRNA promotes malignancy of hepatocellular carcinoma cells by competing for MicroRNA-124 binding with CD151[J]. IUBMB Life, 2017, 69(8): 595-605. DOI: 10.1002/iub.1642.
    [8]
    ZHANG H, WANG F, HU Y. STARD13 promotes hepatocellular carcinoma apoptosis by acting as a ceRNA for Fas[J]. Biotechnol Lett, 2017, 39(2): 207-217. DOI: 10.1007/s10529-016-2253-6.
    [9]
    KLINGENBERG M, MATSUDA A, DIEDERICHS S, et al. Non-coding RNA in hepatocellular carcinoma: Mechanisms, biomarkers and therapeutic targets[J]. J Hepatol, 2017, 67(3): 603-618. DOI: 10.1016/j.jhep.2017.04.009.
    [10]
    YANG H, JIANG Z, WANG S, et al. Long non-coding small nucleolar RNA host genes in digestive cancers[J]. Cancer Med, 2019, 8(18): 7693-7704. DOI: 10.1002/cam4.2622.
    [11]
    ZHANG PF, WANG F, WU J, et al. LncRNA SNHG3 induces EMT and sorafenib resistance by modulating the miR-128/CD151 pathway in hepatocellular carcinoma[J]. J Cell Physiol, 2019, 234(3): 2788-2794. DOI: 10.1002/jcp.27095.
    [12]
    DONG J, TENG F, GUO W, et al. lncRNA SNHG8 promotes the tumorigenesis and metastasis by sponging miR-149-5p and predicts tumor recurrence in hepatocellular carcinoma[J]. Cell Physiol Biochem, 2018, 51(5): 2262-2274. DOI: 10.1159/000495871.
    [13]
    LAN T, MA W, HONG Z, et al. Long non-coding RNA small nucleolar RNA host gene 12 (SNHG12) promotes tumorigenesis and metastasis by targeting miR-199a/b-5p in hepatocellular carcinoma[J]. J Exp Clin Cancer Res, 2017, 36(1): 11. DOI: 10.1186/s13046-016-0486-9.
    [14]
    LI Y, GUO D, ZHAO Y, et al. Long non-coding RNA SNHG5 promotes human hepatocellular carcinoma progression by regulating miR-26a-5p/GSK3β signal pathway[J]. Cell Death Dis, 2018, 9(9): 888. DOI: 10.1038/s41419-018-0882-5.
    [15]
    ZHANG H, ZHOU D, YING M, et al. Expression of long non-coding RNA (lncRNA) small nucleolar rna host gene 1 (SNHG1) exacerbates hepatocellular carcinoma through suppressing miR-195[J]. Med Sci Monit, 2016, 22: 4820-4829. DOI: 10.12659/msm.898574.
    [16]
    LI S, HUANG Y, HUANG Y, et al. The long non-coding RNA TP73-AS1 modulates HCC cell proliferation through miR-200a-dependent HMGB1/RAGE regulation[J]. J Exp Clin Cancer Res, 2017, 36(1): 51. DOI: 10.1186/s13046-017-0519-z.
    [17]
    XIAO J, DING Y, HUANG J, et al. The association of HMGB1 gene with the prognosis of HCC[J]. PLoS One, 2014, 9(2): e89097. DOI: 10.1371/journal.pone.0089097.
    [18]
    GAN Y, YE F, HE XX. The role of YWHAZ in cancer: A maze of opportunities and challenges[J]. J Cancer, 2020, 11(8): 2252-2264. DOI: 10.7150/jca.41316.
    [19]
    WEI GY, HU M, ZHAO L, et al. MiR-451a suppresses cell proliferation, metastasis and EMT via targeting YWHAZ in hepatocellular carcinoma[J]. Eur Rev Med Pharmacol Sci, 2019, 23(12): 5158-5167. DOI: 10.26355/eurrev_201906_18180.
    [20]
    DONG X, YANG Z, YANG H, et al. Long non-coding RNA MIR4435-2HG promotes colorectal cancer proliferation and metastasis through miR-206/YAP1 axis[J]. Front Oncol, 2020, 10: 160. DOI: 10.3389/fonc.2020.00160.
    [21]
    LI C, WANG F, WEI B, et al. LncRNA AWPPH promotes osteosarcoma progression via activation of Wnt/β-catenin pathway through modulating miR-93-3p/FZD7 axis[J]. Biochem Biophys Res Commun, 2019, 514(3): 1017-1022. DOI: 10.1016/j.bbrc.2019.04.203.
    [22]
    MIAO Y, SUI J, XU SY, et al. Comprehensive analysis of a novel four-lncRNA signature as a prognostic biomarker for human gastric cancer[J]. Oncotarget, 2017, 8(43): 75007-75024. DOI: 10.18632/oncotarget.20496.
    [23]
    QIAN H, CHEN L, HUANG J, et al. The lncRNA MIR4435-2HG promotes lung cancer progression by activating β-catenin signalling[J]. J Mol Med (Berl), 2018, 96(8): 753-764. DOI: 10.1007/s00109-018-1654-5.
    [24]
    WANG K, LI X, SONG C, et al. LncRNA AWPPH promotes the growth of triple-negative breast cancer by up-regulating frizzled homolog 7 (FZD7)[J]. Biosci Rep, 2018, 38(6): BSR20181223. DOI: 10.1042/BSR20181223.
    [25]
    SHEN X, DING Y, LU F, et al. Long noncoding RNA MIR4435-2HG promotes hepatocellular carcinoma proliferation and metastasis through the miR-22-3p/YWHAZ axis[J]. Am J Transl Res, 2020, 12(10): 6381-6394. http://www.researchgate.net/publication/346896379_Long_noncoding_RNA_MIR4435-2HG_promotes_hepatocellular_carcinoma_proliferation_and_metastasis_through_the_miR-22-3pYWHAZ_axis
    [26]
    FU L, JIANG Z, LI T, et al. Circular RNAs in hepatocellular carcinoma: Functions and implications[J]. Cancer Med, 2018, 7(7): 3101-3109. DOI: 10.1002/cam4.1574.
    [27]
    HAN B, CHAO J, YAO H. Circular RNA and its mechanisms in disease: From the bench to the clinic[J]. Pharmacol Ther, 2018, 187: 31-44. DOI: 10.1016/j.pharmthera.2018.01.010.
    [28]
    BI J, LIU H, CAI Z, et al. Circ-BPTF promotes bladder cancer progression and recurrence through the miR-31-5p/RAB27A axis[J]. Aging (Albany NY), 2018, 10(8): 1964-1976. DOI: 10.18632/aging.101520.
    [29]
    QIU L, WANG T, GE Q, et al. Circular RNA signature in hepatocellular carcinoma[J]. J Cancer, 2019, 10(15): 3361-3372. DOI: 10.7150/jca.31243.
    [30]
    KONG Q, FAN Q, MA X, et al. CircRNA circUGGT2 contributes to hepatocellular carcinoma development via regulation of the miR-526b-5p/RAB1A axis[J]. Cancer Manag Res, 2020, 12: 10229-10241. DOI: 10.2147/CMAR.S263985.
    [31]
    ZHANG CZ, CAO Y, FU J, et al. miR-634 exhibits anti-tumor activities toward hepatocellular carcinoma via Rab1A and DHX33[J]. Mol Oncol, 2016, 10(10): 1532-1541. DOI: 10.1016/j.molonc.2016.09.001.
    [32]
    LIU Z, YU Y, HUANG Z, et al. CircRNA-5692 inhibits the progression of hepatocellular carcinoma by sponging miR-328-5p to enhance DAB2IP expression[J]. Cell Death Dis, 2019, 10(12): 900. DOI: 10.1038/s41419-019-2089-9.
    [33]
    ZHANG X, XU Y, QIAN Z, et al. circRNA_104075 stimulates YAP-dependent tumorigenesis through the regulation of HNF4a and may serve as a diagnostic marker in hepatocellular carcinoma[J]. Cell Death Dis, 2018, 9(11): 1091. DOI: 10.1038/s41419-018-1132-6.
    [34]
    GLENFIELD C, MCLYSAGHT A. Pseudogenes provide evolutionary evidence for the competitive endogenous RNA hypothesis[J]. Mol Biol Evol, 2018, 35(12): 2886-2899. DOI: 10.1093/molbev/msy183.
    [35]
    WANG MY, CHEN DP, QI B, et al. Pseudogene RACGAP1P activates RACGAP1/Rho/ERK signalling axis as a competing endogenous RNA to promote hepatocellular carcinoma early recurrence[J]. Cell Death Dis, 2019, 10(6): 426. DOI: 10.1038/s41419-019-1666-2.
    [36]
    PIAO J, ZHU L, SUN J, et al. High expression of CDK1 and BUB1 predicts poor prognosis of pancreatic ductal adenocarcinoma[J]. Gene, 2019, 701: 15-22. DOI: 10.1016/j.gene.2019.02.081.
    [37]
    WANG C, YE ML, CHEN ZH, et al. Expression and clinical significance of pseudogene DUXAP8 in liver cancer[J]. J Clin Hepatol, 2020, 36(3): 580-586. DOI: 10.3969/j.issn.1001-5256.2020.03.022.

    王纯, 叶明亮, 陈志航, 等. 假基因DUXAP8在肝癌中的表达及其临床意义[J]. 临床肝胆病杂志, 2020, 36(3): 580-586. DOI: 10.3969/j.issn.1001-5256.2020.03.022.
    [38]
    ZHANG H, CHU K, ZHENG C, et al. Pseudogene DUXAP8 promotes cell proliferation and migration of hepatocellular carcinoma by sponging MiR-490-5p to induce BUB1 expression[J]. Front Genet, 2020, 11: 666. DOI: 10.3389/fgene.2020.00666.
    [39]
    PENG H, ISHIDA M, LI L, et al. Pseudogene INTS6P1 regulates its cognate gene INTS6 through competitive binding of miR-17-5p in hepatocellular carcinoma[J]. Oncotarget, 2015, 6(8): 5666-5677. DOI: 10.18632/oncotarget.3290.
    [40]
    WU MY, TANG YP, LIU JJ, et al. Global transcriptomic study of circRNAs expression profile in sorafenib resistant hepatocellular carcinoma cells[J]. J Cancer, 2020, 11(10): 2993-3001. DOI: 10.7150/jca.39854.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (631) PDF downloads(42) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return