[1] |
National Health Commission of the People's Republic of China. Chinese protocol of diagnosis and treatment of colorectal cancer (2020 edition)[J]. Chin J Surg, 2020, 58(8): 561-585. DOI: 10.3760/cma.j.cn112139-20200518-00390.
中华人民共和国国家卫生健康委员会. 中国结直肠癌诊疗规范(2020年版)[J]. 中华外科杂志, 2020, 58(8): 561-585. DOI: 10.3760/cma.j.cn112139-20200518-00390.
|
[2] |
AHMED RL, SCHMITZ KH, ANDERSON KE, et al. The metabolic syndrome and risk of incident colorectal cancer[J]. Cancer, 2006, 107(1): 28-36. DOI: 10.1002/cncr.21950.
|
[3] |
PAPATHEODORIDI M, CHOLONGITAS E. Diagnosis of non-alcoholic fatty liver disease (NAFLD): Current concepts[J]. Curr Pharm Des, 2018, 24(38): 4574-4586. DOI: 10.2174/1381612825666190117102111.
|
[4] |
ZHOU F, ZHOU J, WANG W, et al. Unexpected rapid increase in the burden of NAFLD in China from 2008 to 2018: A systematic review and meta-analysis[J]. Hepatology, 2019, 70(4): 1119-1133. DOI: 10.1002/hep.30702.
|
[5] |
ESLAM M, NEWSOME PN, SARIN SK, et al. A new definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement[J]. J Hepatol, 2020, 73(1): 202-209. DOI: 10.1016/j.jhep.2020.03.039.
|
[6] |
HWANG ST, CHO YK, PARK JH, et al. Relationship of non-alcoholic fatty liver disease to colorectal adenomatous polyps[J]. J Gastroenterol Hepatol, 2010, 25(3): 562-567. DOI: 10.1111/j.1440-1746.2009.06117.x.
|
[7] |
HUANG KW, LEU HB, WANG YJ, et al. Patients with nonalcoholic fatty liver disease have higher risk of colorectal adenoma after negative baseline colonoscopy[J]. Colorectal Dis, 2013, 15(7): 830-835. DOI: 10.1111/codi.12172.
|
[8] |
CHO Y, LIM SK, JOO SK, et al. Nonalcoholic steatohepatitis is associated with a higher risk of advanced colorectal neoplasm[J]. Liver Int, 2019, 39(9): 1722-1731. DOI: 10.1111/liv.14163.
|
[9] |
ZE EY, KIM BJ, JUN DH, et al. The fatty liver index: A simple and accurate predictor of colorectal adenoma in an average-risk population[J]. Dis Colon Rectum, 2018, 61(1): 36-42. DOI: 10.1097/DCR.0000000000000973.
|
[10] |
KIM MC, PARK JG, JANG BI, et al. Liver fibrosis is associated with risk for colorectal adenoma in patients with nonalcoholic fatty liver disease[J]. Medicine (Baltimore), 2019, 98(6): e14139. DOI: 10.1097/MD.0000000000014139.
|
[11] |
MAHAMID M, YASSIN T, ABU ELHEJA O, et al. Association between fatty liver disease and hyperplastic colonic polyp[J]. Isr Med Assoc J, 2017, 19(2): 105-108.
|
[12] |
AHN JS, SINN DH, MIN YW, et al. Non-alcoholic fatty liver diseases and risk of colorectal neoplasia[J]. Aliment Pharmacol Ther, 2017, 45(2): 345-353. DOI: 10.1111/apt.13866.
|
[13] |
STADLMAYR A, AIGNER E, STEGER B, et al. Nonalcoholic fatty liver disease: An independent risk factor for colorectal neoplasia[J]. J Intern Med, 2011, 270(1): 41-49. DOI: 10.1111/j.1365-2796.2011.02377.x.
|
[14] |
CHEN QF, ZHOU XD, SUN YJ, et al. Sex-influenced association of non-alcoholic fatty liver disease with colorectal adenomatous and hyperplastic polyps[J]. World J Gastroenterol, 2017, 23(28): 5206-5215. DOI: 10.3748/wjg.v23.i28.5206.
|
[15] |
LI Y, LIU S, GAO Y, et al. Association between NAFLD and risk of colorectal adenoma in Chinese Han population[J]. J Clin Transl Hepatol, 2019, 7(2): 99-105. DOI: 10.14218/JCTH.2019.00010.
|
[16] |
KHAN RS, BRIL F, CUSI K, et al. Modulation of insulin resistance in nonalcoholic fatty liver disease[J]. Hepatology, 2019, 70(2): 711-724. DOI: 10.1002/hep.30429.
|
[17] |
CLEMMONS DR. Role of IGF-binding proteins in regulating IGF responses to changes in metabolism[J]. J Mol Endocrinol, 2018, 61(1): T139-T169. DOI: 10.1530/JME-18-0016.
|
[18] |
WARD CW, LAWRENCE MC. Ligand-induced activation of the insulin receptor: A multi-step process involving structural changes in both the ligand and the receptor[J]. Bioessays, 2009, 31(4): 422-434. DOI: 10.1002/bies.200800210.
|
[19] |
ZHONG H, FAZENBAKER C, CHEN C, et al. Overproduction of IGF-2 drives a subset of colorectal cancer cells, which specifically respond to an anti-IGF therapeutic antibody and combination therapies[J]. Oncogene, 2017, 36(6): 797-806. DOI: 10.1038/onc.2016.248.
|
[20] |
UNGER C, KRAMER N, UNTERLEUTHNER D, et al. Stromal-derived IGF2 promotes colon cancer progression via paracrine and autocrine mechanisms[J]. Oncogene, 2017, 36(38): 5341-5355. DOI: 10.1038/onc.2017.116.
|
[21] |
COBBINA E, AKHLAGHI F. Non-alcoholic fatty liver disease (NAFLD) - pathogenesis, classification, and effect on drug metabolizing enzymes and transporters[J]. Drug Metab Rev, 2017, 49(2): 197-211. DOI: 10.1080/03602532.2017.1293683.
|
[22] |
AGVERA-GONZÁLEZ S, BURTON OT, VÁZQUEZ-CHÁVEZ E, et al. Adenomatous polyposis coli defines treg differentiation and anti-inflammatory function through microtubule-mediated NFAT localization[J]. Cell Rep, 2017, 21(1): 181-194. DOI: 10.1016/j.celrep.2017.09.020.
|
[23] |
GERMAN P, SZANISZLO P, HAJAS G, et al. Activation of cellular signaling by 8-oxoguanine DNA glycosylase-1-initiated DNA base excision repair[J]. DNA Repair (Amst), 2013, 12(10): 856-863. DOI: 10.1016/j.dnarep.2013.06.006.
|
[24] |
SASAKI Y, TAKEDA H, SATO T, et al. Serum Interleukin-6, insulin, and HOMA-IR in male individuals with colorectal adenoma[J]. Clin Cancer Res, 2012, 18(2): 392-399. DOI: 10.1158/1078-0432.CCR-11-0896.
|
[25] |
YAOITA T, SASAKI Y, YOKOZAWA J, et al. Treatment with anti-interleukin-6 receptor antibody ameliorates intestinal polyposis in Apc(Min/+) mice under high-fat diet conditions[J]. Tohoku J Exp Med, 2015, 235(2): 127-134. DOI: 10.1620/tjem.235.127.
|
[26] |
WALDNER MJ, WIRTZ S, JEFREMOW A, et al. VEGF receptor signaling links inflammation and tumorigenesis in colitis-associated cancer[J]. J Exp Med, 2010, 207(13): 2855-2868. DOI: 10.1084/jem.20100438.
|
[27] |
PAN S, HONG W, WU W, et al. The relationship of nonalcoholic fatty liver disease and metabolic syndrome for colonoscopy colorectal neoplasm[J]. Medicine (Baltimore), 2017, 96(2): e5809. DOI: 10.1097/MD.0000000000005809.
|
[28] |
POLYZOS SA, KOUNTOURAS J, MANTZOROS CS. Adipokines in nonalcoholic fatty liver disease[J]. Metabolism, 2016, 65(8): 1062-1079. DOI: 10.1016/j.metabol.2015.11.006.
|
[29] |
NAKAI K, WATARI J, TOZAWA K, et al. Sex differences in associations among metabolic syndrome, obesity, related biomarkers, and colorectal adenomatous polyp risk in a Japanese population[J]. J Clin Biochem Nutr, 2018, 63(2): 154-163. DOI: 10.3164/jcbn.18-11.
|
[30] |
OTANI K, ISHIHARA S, YAMAGUCHI H, et al. Adiponectin and colorectal cancer[J]. Surg Today, 2017, 47(2): 151-158. DOI: 10.1007/s00595-016-1334-4.
|
[31] |
UYAR GO, SANLIER N. Association of adipokines and insulin, which have a role in obesity, with colorectal cancer[J]. Eurasian J Med, 2019, 51(2): 191-195. DOI: 10.5152/eurasianjmed.2018.18089.
|
[32] |
GHASEMI A, SAEIDI J, AZIMI-NEJAD M, et al. Leptin-induced signaling pathways in cancer cell migration and invasion[J]. Cell Oncol (Dordr), 2019, 42(3): 243-260. DOI: 10.1007/s13402-019-00428-0.
|
[33] |
COMSTOCK SS, HORTOS K, KOVAN B, et al. Adipokines and obesity are associated with colorectal polyps in adult males: A cross-sectional study[J]. PLoS One, 2014, 9(1): e85939. DOI: 10.1371/journal.pone.0085939.
|
[34] |
SAFARI Z, GÉRARD P. The links between the gut microbiome and non-alcoholic fatty liver disease (NAFLD)[J]. Cell Mol Life Sci, 2019, 76(8): 1541-1558. DOI: 10.1007/s00018-019-03011-w.
|
[35] |
RYU JK, KIM SJ, RAH SH, et al. Reconstruction of LPS transfer cascade reveals structural determinants within LBP, CD14, and TLR4-MD2 for efficient LPS recognition and transfer[J]. Immunity, 2017, 46(1): 38-50. DOI: 10.1016/j.immuni.2016.11.007.
|
[36] |
LIU T, SONG X, KHAN S, et al. The gut microbiota at the intersection of bile acids and intestinal carcinogenesis: An old story, yet mesmerizing[J]. Int J Cancer, 2020, 146(7): 1780-1790. DOI: 10.1002/ijc.32563.
|
[37] |
WANG S, DONG W, LIU L, et al. Interplay between bile acids and the gut microbiota promotes intestinal carcinogenesis[J]. Mol Carcinog, 2019, 58(7): 1155-1167. DOI: 10.1002/mc.22999.
|
[38] |
NAGATHIHALLI NS, BEESETTY Y, LEE W, et al. Novel mechanistic insights into ectodomain shedding of EGFR Ligands Amphiregulin and TGF-α: Impact on gastrointestinal cancers driven by secondary bile acids[J]. Cancer Res, 2014, 74(7): 2062-2072. DOI: 10.1158/0008-5472.CAN-13-2329.
|
[39] |
SELMIN OI, FANG C, LYON AM, et al. Inactivation of adenomatous polyposis coli reduces bile acid/farnesoid X receptor expression through Fxr gene CpG methylation in mouse colon tumors and human colon cancer cells[J]. J Nutr, 2016, 146(2): 236-242. DOI: 10.3945/jn.115.216580.
|
[40] |
WAJCHENBERG BL. Subcutaneous and visceral adipose tissue: Their relation to the metabolic syndrome[J]. Endocr Rev, 2000, 21(6): 697-738. DOI: 10.1210/edrv.21.6.0415.
|
[41] |
NAM SY, KIM BC, HAN KS, et al. Abdominal visceral adipose tissue predicts risk of colorectal adenoma in both sexes[J]. Clin Gastroenterol Hepatol, 2010, 8(5): 443-450. e1-2. DOI: 10.1016/j.cgh.2010.02.001.
|
[42] |
DONOHOE CL, DOYLE SL, REYNOLDS JV. Visceral adiposity, insulin resistance and cancer risk[J]. Diabetol Metab Syndr, 2011, 3: 12. DOI: 10.1186/1758-5996-3-12.
|