中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R
Volume 37 Issue 12
Dec.  2021
Turn off MathJax
Article Contents

Establishment of screening models for nonalcoholic fatty liver disease in the adult Blang population

DOI: 10.3969/j.issn.1001-5256.2021.12.025
Research funding:

Open Research Project of Shanghai Key Laboratory of Diabetes Mellitus (SHKLD-KF-1602);

Natural Science Foundation of Shanghai (18ZR1429000)

  • Received Date: 2021-04-10
  • Accepted Date: 2021-06-10
  • Published Date: 2021-12-20
  •   Objective  To establish simple screening models for nonalcoholic fatty liver disease (NAFLD) in the adult Blang population.  Methods  Based on the survey data of metabolic diseases in the Blang people aged 18 years or above in 2017, 2993 respondents were stratified by sex and age (at an interval of 5 years) and then randomly divided into modeling group with 1497 respondents and validation group with 1496 respondents. Related information was collected, including demographic data, smoking, drinking, family history of diseases and personal medical history, body height, body weight, waist circumference, and blood pressure, and related markers were measured, including fasting plasma glucose, 2-hour postprandial plasma glucose or blood glucose at 2 hours after glucose loading, triglyceride, total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, alanine aminotransferase (ALT), aspartate aminotransferase (AST), and gamma-glutamyl transpeptidase. The chi-square test was used for comparison of categorical data between two groups. Logistic regression analysis was used to establish the screening model. The area under the receiver operating characteristic curve (AUC), sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, positive predictive value, and negative predictive value were used to evaluate the screening performance of established models versus existing models in the study population, and the DeLong method was used for comparison of AUC.  Results  Three screening models for NAFLD were established based on physical and biochemical measurements, i.e., simple noninvasive model 1 (age, body mass index, and waist circumference), noninvasive model 2 with the addition of blood pressure, and model 3 with the combination of hematological parameters (diabetes and ALT/AST). In the modeling group, the three models had an AUC of 0.881 (95% confidence interval [CI]: 0.864-0.897), 0.892 (95%CI: 0.875-0.907), and 0.894 (95%CI: 0.877-0.909), respectively, and there was a significant difference between model 1 and models 2/3 (P=0.004 0 and P < 0.001); in the validation group, the three models had an AUC of 0.891 (95%CI: 0.874-0.906), 0.892 (95%CI: 0.875-0.907), and 0.893 (95%CI: 0.876-0.908), respectively, and there was no significant difference between the three groups (P > 0.05). Based on the overall consideration of screening performance, invasiveness, and cost, the simple noninvasive model 1 was considered the optimal screening model for NAFLD in this population. Model 1 had the highest Youden index at the cut-off value of 5 points, and when the score of ≥5 points was selected as the criteria for NAFLD, the model had a sensitivity of 86.5%, a specificity of 79.7%, a positive predictive value of 50.3%, and a negative predictive value of 96.1% in the modeling group and a sensitivity of 85.6%, a specificity of 80.6%, a positive predictive value of 51.7%, and a negative predictive value of 95.8% in the validation group.  Conclusion  The NAFLD screening models established for the adult Blang population based on age and obesity indicators have relatively higher sensitivity, specificity, and negative predictive value, and this tool is of important practical significance for the intervention of NAFLD and its closely related metabolic diseases in this population.

     

  • loading
  • [1]
    RINELLA ME. Nonalcoholic fatty liver disease: A systematic review[J]. JAMA, 2015, 313(22): 2263-2273. DOI: 10.1001/jama.2015.5370.
    [2]
    DIEHL AM, DAY C. Cause, pathogenesis, and treatment of nonalcoholic steatohepatitis[J]. N Engl J Med, 2017, 377(21): 2063-2072. DOI: 10.1056/NEJMra1503519.
    [3]
    ESTES C, ANSTEE QM, ARIAS-LOSTE MT, et al. Modeling NAFLD disease burden in China, France, Germany, Italy, Japan, Spain, United Kingdom, and United States for the period 2016-2030[J]. J Hepatol, 2018, 69(4): 896-904. DOI: 10.1016/j.jhep.2018.05.036.
    [4]
    YOUNOSSI ZM, KOENIG AB, ABDELATIF D, et al. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes[J]. Hepatology, 2016, 64(1): 73-84. DOI: 10.1002/hep.28431.
    [5]
    WILLIAMSON RM, PRICE JF, GLANCY S, et al. Prevalence of and risk factors for hepatic steatosis and nonalcoholic fatty liver disease in people with type 2 diabetes: The edinburgh type 2 diabetes study[J]. Diabetes Care, 2011, 34(5): 1139-1144. DOI: 10.2337/dc10-2229.
    [6]
    TARGHER G, BERTOLINI L, PADOVANI R, et al. Prevalence of nonalcoholic fatty liver disease and its association with cardiovascular disease among type 2 diabetic patients[J]. Diabetes Care, 2007, 30(5): 1212-1218. DOI: 10.2337/dc06-2247.
    [7]
    PETIT JM, GUIU B, TERRIAT B, et al. Nonalcoholic fatty liver is not associated with carotid intima-media thickness in type 2 diabetic patients[J]. J Clin Endocrinol Metab, 2009, 94(10): 4103-4106. DOI: 10.1210/jc.2009-0541.
    [8]
    MANTOVANI A, PETRACCA G, BEATRICE G, et al. Non-alcoholic fatty liver disease and risk of incident diabetes mellitus: An updated meta-analysis of 501 022 adult individuals[J]. Gut, 2021, 70(5): 962-969. DOI: 10.1136/gutjnl-2020-322572.
    [9]
    BALLESTRI S, ZONA S, TARGHER G, et al. Nonalcoholic fatty liver disease is associated with an almost twofold increased risk of incident type 2 diabetes and metabolic syndrome. Evidence from a systematic review and meta-analysis[J]. J Gastroenterol Hepatol, 2016, 31(5): 936-944. DOI: 10.1111/jgh.13264.
    [10]
    TARGHER G, BYRNE CD, LONARDO A, et al. Non-alcoholic fatty liver disease and risk of incident cardiovascular disease: A meta-analysis[J]. J Hepatol, 2016, 65(3): 589-600. DOI: 10.1016/j.jhep.2016.05.013.
    [11]
    BEDOGNI G, BELLENTANI S, MIGLIOLI L, et al. The fatty liver index: A simple and accurate predictor of hepatic steatosis in the general population[J]. BMC Gastroenterol, 2006, 6: 33. DOI: 10.1186/1471-230X-6-33.
    [12]
    LEE JH, KIM D, KIM HJ, et al. Hepatic steatosis index: A simple screening tool reflecting nonalcoholic fatty liver disease[J]. Dig Liver Dis, 2010, 42(7): 503-508. DOI: 10.1016/j.dld.2009.08.002.
    [13]
    LONG MT, PEDLEY A, COLANTONIO LD, et al. Development and validation of the framingham steatosis index to identify persons with hepatic steatosis[J]. Clin Gastroenterol Hepatol, 2016, 14(8): 1172-1180. e1172. DOI: 10.1016/j.cgh.2016.03.034.
    [14]
    FUYAN S, JING L, WENJUN C, et al. Fatty liver disease index: A simple screening tool to facilitate diagnosis of nonalcoholic fatty liver disease in the Chinese population[J]. Dig Dis Sci, 2013, 58(11): 3326-3334. DOI: 10.1007/s10620-013-2774-y.
    [15]
    WANG J, XU C, XUN Y, et al. ZJU index: A novel model for predicting nonalcoholic fatty liver disease in a Chinese population[J]. Sci Rep, 2015, 5: 16494. DOI: 10.1038/srep16494.
    [16]
    LIANG YB, HOU XH, WU W, et al. Prevalence of diabetes and its associated factors in Blang ethnic adults[J]. Chin J Intern Med, 2019, 58(1): 27-32. DOI: 10.3760/cma.j.issn.0578-1426.2019.01.005.

    梁烨倍, 侯旭宏, 吴伟, 等. 布朗族成人糖尿病患病率及其影响因素研究[J]. 中华内科杂志, 2019, 58(1): 27-32. DOI: 10.3760/cma.j.issn.0578-1426.2019.01.005.
    [17]
    Fatty Liver Expert Committee, Chinese Medical Doctor Association, National Workshop on Fatty Liver and Alcoholic Liver Disease, Chinese Society of Hepatology, Chinese Medical Association. Guidelines of prevention and treatment for alcoholic liver disease: A 2018 update[J]. J Clin Hepatol, 2018, 34(5): 939-946. DOI: 10.3969/j.issn.1001-5256.2018.05.006

    中国医师协会脂肪性肝病专家委员会, 中华医学会肝病学分会脂肪肝和酒精性肝病学组. 酒精性肝病防治指南(2018年更新版)[J]. 临床肝胆病杂志, 2018, 34(5): 939-946. DOI: 10.3969/j.issn.1001-5256.2018.05.006
    [18]
    National Workshop on Fatty Liver and Alcoholic Liver Disease, Chinese Society of Hepatology, Chinese Medical Association, Fatty Liver Expert Committee, Chinese Medical Doctor Association. Guidelines of prevention and treatment for nonalcoholic fatty liver disease: A 2018 update[J]. J Clin Hepatol, 2018, 34(5): 947-957. DOI: 10.3969/j.issn.1001-5256.2018.05.007.

    中华医学会肝病学分会脂肪肝和酒精性肝病学组, 中国医师协会脂肪性肝病专家委员会. 非酒精性脂肪性肝病防治指南(2018年更新版)[J]. 临床肝胆病杂志, 2018, 34(5): 947-957. DOI: 10.3969/j.issn.1001-5256.2018.05.007.
    [19]
    Cooperative Meta-analysis Group of China Obesity Task Force. Predictive values of body mass index and waist circumference to risk factors of related diseases in Chinese adult population[J]. Chin J Epidemiol, 2002, 23(1): 5-10. DOI: 10.3760/j.issn:0254-6450.2002.01.003.

    中国肥胖问题工作组数据汇总分析协作组. 我国成人体重指数和腰围对相关疾病危险因素异常的预测价值: 适宜体重指数和腰围切点的研究[J]. 中华流行病学杂志, 2002, 23(1): 5-10. DOI: 10.3760/j.issn:0254-6450.2002.01.003.
    [20]
    ALBERTI KG, ZIMMET PZ. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: Diagnosis and classification of diabetes mellitus provisional report of a WHO consultation[J]. Diabet Med, 1998, 15(7): 539-553. DOI: 10.1002/(SICI)1096-9136(199807)15:7<539::AID-DIA668>3.0.CO;2-S.
    [21]
    Chinese Guidelines for the Management of Hypertension Writing Group; Chinese Society of Cardiovascular Diseases, Chinese Medical Association, Hypertension League; Hypertension Professional Committee, Chinese Medical Doctor Association. Chinese guidelines for the management of hypertensionWriting Group of 2018[J]. Chin J Cardiovasc Med, 2019, 24(1): 24-56. DOI: 10.3969/j.issn.1007-5410.2019.01.002.

    中国高血压防治指南修订委员会, 高血压联盟中华医学会心血管病学分会, 中国医师协会高血压专业委员会. 中国高血压防治指南(2018年修订版)[J]. 中国心血管杂志, 2019, 24(1): 24-56. DOI: 10.3969/j.issn.1007-5410.2019.01.002.
    [22]
    Joint Committee for Revision of Chinese Guidelines for Prevention and Treatment of Dyslipidemia in Adults. 2016 Chinese guideline for the management of dyslipidemia in adults[J]. Chin J Cardiol, 2016, 44(10): 833-853. DOI: 10.3760/cma.j.issn.0253-3758.2016.10.005.

    中国成人血脂异常防治指南修订联合委员会. 中国成人血脂异常防治指南(2016年修订版)[J]. 中华心血管病杂志, 2016, 44(10): 833-853. DOI: 10.3760/cma.j.issn.0253-3758.2016.10.005.
    [23]
    DELONG ER, DELONG DM, CLARKE-PEARSON DL. Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach[J]. Biometrics, 1988, 44(3): 837-845.
    [24]
    ZHANG S, DU T, ZHANG J, et al. The triglyceride and glucose index (TyG) is an effective biomarker to identify nonalcoholic fatty liver disease[J]. Lipids Health Dis, 2017, 16(1): 15. DOI: 10.1186/s12944-017-0409-6.
    [25]
    DAI H, WANG W, CHEN R, et al. Lipid accumulation product is a powerful tool to predict non-alcoholic fatty liver disease in Chinese adults[J]. Nutr Metab (Lond), 2017, 14: 49. DOI: 10.1186/s12986-017-0206-2.
    [26]
    NALBANTOGLU IL, BRUNT EM. Role of liver biopsy in nonalcoholic fatty liver disease[J]. World J Gastroenterol, 2014, 20(27): 9026-9037. DOI: 10.3748/wjg.v20.i27.9026.
    [27]
    CASTERA L, VILGRAIN V, ANGULO P. Noninvasive evaluation of NAFLD[J]. Nat Rev Gastroenterol Hepatol, 2013, 10(11): 666-675. DOI: 10.1038/nrgastro.2013.175.
    [28]
    FENG RN, DU SS, WANG C, et al. Lean-non-alcoholic fatty liver disease increases risk for metabolic disorders in a normal weight Chinese population[J]. World J Gastroenterol, 2014, 20(47): 17932-17940. DOI: 10.3748/wjg.v20.i47.17932.
    [29]
    LIU CJ. Prevalence and risk factors for non-alcoholic fatty liver disease in Asian people who are not obese[J]. J Gastroenterol Hepatol, 2012, 27(10): 1555-1560. DOI: 10.1111/j.1440-1746.2012.07222.x.
    [30]
    FAN JG, ZHU J, LI XJ, et al. Prevalence of and risk factors for fatty liver in a general population of Shanghai, China[J]. J Hepatol, 2005, 43(3): 508-514. DOI: 10.1016/j.jhep.2005.02.042.
    [31]
    WEI JL, LEUNG JC, LOONG TC, et al. Prevalence and severity of nonalcoholic fatty liver disease in non-obese patients: A population study using proton-magnetic resonance spectroscopy[J]. Am J Gastroenterol, 2015, 110(9): 1306-1314; quiz 1315. DOI: 10.1038/ajg.2015.235.
    [32]
    KAWAMOTO R, KOHARA K, KUSUNOKI T, et al. Alanine aminotransferase/aspartate aminotransferase ratio is the best surrogate marker for insulin resistance in non-obese Japanese adults[J]. Cardiovasc Diabetol, 2012, 11: 117. DOI: 10.1186/1475-2840-11-117.
    [33]
    WANG YH, GAO Y. Research progress in diagnosis and treatment of non-alcoholic fatty liver disease combinated with type 2 diabetes mellitus[J]. J Jilin Univ(Med Edit), 2020, 46(6): 1324-1331. DOI: 10.13481/j.1671-587x.20200634.

    王雨涵, 高影. 非酒精性脂肪性肝病并发2型糖尿病诊断和治疗的研究进展[J]. 吉林大学学报(医学版), 2020, 46(6): 1324-1331. DOI: 10.13481/j.1671-587x.20200634.
    [34]
    SAADEH S, YOUNOSSI ZM, REMER EM, et al. The utility of radiological imaging in nonalcoholic fatty liver disease[J]. Gastroenterology, 2002, 123(3): 745-750. DOI: 10.1053/gast.2002.35354.
    [35]
    FISHBEIN M, CASTRO F, CHERUKU S, et al. Hepatic MRI for fat quantitation: Its relationship to fat morphology, diagnosis, and ultrasound[J]. J Clin Gastroenterol, 2005, 39(7): 619-625. DOI: 10.1097/00004836-200508000-00012.
    [36]
    RYAN CK, JOHNSON LA, GERMIN BI, et al. One hundred consecutive hepatic biopsies in the workup of living donors for right lobe liver transplantation[J]. Liver Transpl, 2002, 8(12): 1114-1122. DOI: 10.1053/jlts.2002.36740.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Tables(7)

    Article Metrics

    Article views (419) PDF downloads(32) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return