| [1] |
European Association for the Study of the Liver. EASL Clinical Practice Guidelines: Management of cholestatic liver diseases[J]. J Hepatol, 2009, 51( 2): 237- 267. DOI: 10.1016/j.jhep.2009.04.009.
|
| [2] |
CHEN HL, WU SH, HSU SH, et al. Jaundice revisited: Recent advances in the diagnosis and treatment of inherited cholestatic liver diseases[J]. J Biomed Sci, 2018, 25( 1): 75. DOI: 10.1186/s12929-018-0475-8.
|
| [3] |
MOLINARO A, MARSCHALL HU. Bile acid metabolism and FXR-mediated effects in human cholestatic liver disorders[J]. Biochem Soc Trans, 2022, 50( 1): 361- 373. DOI: 10.1042/BST20210658.
|
| [4] |
WILLIAMS R, ALEXANDER G, ARMSTRONG I, et al. Disease burden and costs from excess alcohol consumption, obesity, and viral hepatitis: Fourth report of the Lancet Standing Commission on Liver Disease in the UK[J]. Lancet, 2018, 391( 10125): 1097- 1107. DOI: 10.1016/S0140-6736(17)32866-0.
|
| [5] |
KIM WR, LINDOR KD, LOCKE GR 3, et al. Epidemiology and natural history of primary biliary cirrhosis in a US community[J]. Gastroenterology, 2000, 119( 6): 1631- 1636. DOI: 10.1053/gast.2000.20197.
|
| [6] |
LV TT, CHEN S, LI M, et al. Regional variation and temporal trend of primary biliary cholangitis epidemiology: A systematic review and meta-analysis[J]. J Gastroenterol Hepatol, 2021, 36( 6): 1423- 1434. DOI: 10.1111/jgh.15329.
|
| [7] |
LEVY C, MANNS M, HIRSCHFIELD G. New treatment paradigms in primary biliary cholangitis[J]. Clin Gastroenterol Hepatol, 2023, 21( 8): 2076- 2087. DOI: 10.1016/j.cgh.2023.02.005.
|
| [8] |
CAREY EJ, ALI AH, LINDOR KD. Primary biliary cirrhosis[J]. Lancet, 2015, 386( 10003): 1565- 1575. DOI: 10.1016/S0140-6736(15)00154-3.
|
| [9] |
HASEGAWA S, YONEDA M, KURITA Y, et al. Cholestatic liver disease: Current treatment strategies and new therapeutic agents[J]. Drugs, 2021, 81( 10): 1181- 1192. DOI: 10.1007/s40265-021-01545-7.
|
| [10] |
ASSIS DN, BOWLUS CL. Recent advances in the management of primary sclerosing cholangitis[J]. Clin Gastroenterol Hepatol, 2023, 21( 8): 2065- 2075. DOI: 10.1016/j.cgh.2023.04.004.
|
| [11] |
ALBILLOS A, DE GOTTARDI A, RESCIGNO M. The gut-liver axis in liver disease: Pathophysiological basis for therapy[J]. J Hepatol, 2020, 72( 3): 558- 577. DOI: 10.1016/j.jhep.2019.10.003.
|
| [12] |
GUI WF, HOLE MJ, MOLINARO A, et al. Colitis ameliorates cholestatic liver disease via suppression of bile acid synthesis[J]. Nat Commun, 2023, 14( 1): 3304. DOI: 10.1038/s41467-023-38840-8.
|
| [13] |
RODRIGUES CMP, MOSHAGE H. Targeting TGR5 in cholangiocyte proliferation: Default topic[J]. Gut, 2016, 65( 3): 369- 370. DOI: 10.1136/gutjnl-2015-310812.
|
| [14] |
YOKODA RT, RODRIGUEZ EA. Review: Pathogenesis of cholestatic liver diseases[J]. World J Hepatol, 2020, 12( 8): 423- 435. DOI: 10.4254/wjh.v12.i8.423.
|
| [15] |
PENZ-ÖSTERREICHER M, ÖSTERREICHER CH, TRAUNER M. Fibrosis in autoimmune and cholestatic liver disease[J]. Best Pract Res Clin Gastroenterol, 2011, 25( 2): 245- 258. DOI: 10.1016/j.bpg.2011.02.001.
|
| [16] |
KIRKLAND JL, TCHKONIA T. Cellular senescence: A translational perspective[J]. EBioMedicine, 2017, 21: 21- 28. DOI: 10.1016/j.ebiom.2017.04.013.
|
| [17] |
ZENG J, FAN JG, ZHOU HP. Bile acid-mediated signaling in cholestatic liver diseases[J]. Cell Biosci, 2023, 13( 1): 77. DOI: 10.1186/s13578-023-01035-1.
|
| [18] |
SASAKI M, IKEDA H, YAMAGUCHI J, et al. Telomere shortening in the damaged small bile ducts in primary biliary cirrhosis reflects ongoing cellular senescence[J]. Hepatology, 2008, 48( 1): 186- 195. DOI: 10.1002/hep.22348.
|
| [19] |
JALAN-SAKRIKAR N, ANWAR A, YAQOOB U, et al. Telomere dysfunction promotes cholangiocyte senescence and biliary fibrosis in primary sclerosing cholangitis[J]. JCI Insight, 2023, 8( 20): e170320. DOI: 10.1172/jci.insight.170320.
|
| [20] |
FERREIRA-GONZALEZ S, LU WY, RAVEN A, et al. Paracrine cellular senescence exacerbates biliary injury and impairs regeneration[J]. Nat Commun, 2018, 9( 1): 1020. DOI: 10.1038/s41467-018-03299-5.
|
| [21] |
JALAN-SAKRIKAR N, GUICCIARDI ME, O’HARA SP, et al. Central role for cholangiocyte pathobiology in cholestatic liver diseases[J]. Hepatology, 2024. DOI: 10.1097/HEP.0000000000001093.[ Epub ahead of print]
|
| [22] |
FLEISHMAN JS, KUMAR S. Bile acid metabolism and signaling in health and disease: Molecular mechanisms and therapeutic targets[J]. Signal Transduct Target Ther, 2024, 9( 1): 97. DOI: 10.1038/s41392-024-01811-6.
|
| [23] |
GUIXÉ-MUNTET S, QUESADA-VÁZQUEZ S, GRACIA-SANCHO J. Pathophysiology and therapeutic options for cirrhotic portal hypertension[J]. Lancet Gastroenterol Hepatol, 2024, 9( 7): 646- 663. DOI: 10.1016/S2468-1253(23)00438-7.
|
| [24] |
KÖNIGSHOFER P, HOFER BS, BRUSILOVSKAYA K, et al. Distinct structural and dynamic components of portal hypertension in different animal models and human liver disease etiologies[J]. Hepatology, 2022, 75( 3): 610- 622. DOI: 10.1002/hep.32220.
|
| [25] |
ŽÍŽALOVÁ K, NOVÁKOVÁ B, VECKA M, et al. Serum concentration of taurochenodeoxycholic acid predicts clinically significant portal hypertension[J]. Liver Int, 2023, 43( 4): 888- 895. DOI: 10.1111/liv.15481.
|
| [26] |
KEITEL V, REINEHR R, GATSIOS P, et al. The G-protein coupled bile salt receptor TGR5 is expressed in liver sinusoidal endothelial cells[J]. Hepatology, 2007, 45( 3): 695- 704. DOI: 10.1002/hep.21458.
|
| [27] |
KLINDT C, REICH M, HELLWIG B, et al. The G protein-coupled bile acid receptor TGR5(Gpbar1) modulates endothelin-1 signaling in liver[J]. Cells, 2019, 8( 11): 1467. DOI: 10.3390/cells8111467.
|
| [28] |
DEVANE J, OTT E, OLINGER EG, et al. Progressive liver, kidney, and heart degeneration in children and adults affected by TULP3 mutations[J]. Am J Hum Genet, 2022, 109( 5): 928- 943. DOI: 10.1016/j.ajhg.2022.03.015.
|
| [29] |
JIANG CY, LIAN M, MA X. A rare case mimicking congenital hepatic fibrosis[J]. Gastroenterology, 2024, 167( 6): 1087- 1090. DOI: 10.1053/j.gastro.2024.04.018.
|
| [30] |
WU BH, SHENTU XY, NAN HT, et al. A spatiotemporal atlas of cholestatic injury and repair in mice[J]. Nat Genet, 2024, 56( 5): 938- 952. DOI: 10.1038/s41588-024-01687-w.
|
| [31] |
IMAM MH, SINAKOS E, GOSSARD AA, et al. High-dose ursodeoxycholic acid increases risk of adverse outcomes in patients with early stage primary sclerosing cholangitis[J]. Aliment Pharmacol Ther, 2011, 34( 10): 1185- 1192. DOI: 10.1111/j.1365-2036.2011.04863.x.
|
| [32] |
TRAUNER M, FICKERT P, TRIVEDI P, et al. Norucholic acid for the treatment of primary sclerosing cholangitis: Baseline data from a phase III trial[J]. J Hepatol, 2023, 78: S403. DOI: 10.1016/s0168-8278(23)01064-4.
|
| [33] |
SANYAL AJ, RATZIU V, LOOMBA R, et al. Results from a new efficacy and safety analysis of the REGENERATE trial of obeticholic acid for treatment of pre-cirrhotic fibrosis due to non-alcoholic steatohepatitis[J]. J Hepatol, 2023, 79( 5): 1110- 1120. DOI: 10.1016/j.jhep.2023.07.014.
|
| [34] |
US Food and Drug Administration. Serious liver injury being observed in patients without cirrhosis taking Ocaliva(obeticholic acid) to treat primary biliary cholangitis[EB/OL]. https://www.fda.gov/drugs/drug-safety-and-availability/serious-liver-injury-being-observed-patients-without-cirrhosis-taking-ocaliva-obeticholic-acid-treat. https: //www.fda.gov/drugs/drug-safety-and-availability/serious-liver-injury-being-observed-patients-without-cirrhosis-taking-ocaliva-obeticholic-acid-treat
|
| [35] |
ERSTAD DJ, FARRAR CT, GHOSHAL S, et al. Molecular magnetic resonance imaging accurately measures the antifibrotic effect of EDP-305, a novel farnesoid X receptor agonist[J]. Hepatol Commun, 2018, 2( 7): 821- 835. DOI: 10.1002/hep4.1193.
|
| [36] |
SORDA JA, GONZÁLEZ BALLERGA E, BARREYRO FJ, et al. Bezafibrate therapy in primary biliary cholangitis refractory to ursodeoxycholic acid: A longitudinal study of paired liver biopsies at 5 years of follow up[J]. Aliment Pharmacol Ther, 2021, 54( 9): 1202- 1212. DOI: 10.1111/apt.16618.
|
| [37] |
BOWLUS CL, GALAMBOS MR, ASPINALL RJ, et al. A phase II, randomized, open-label, 52-week study of seladelpar in patients with primary biliary cholangitis[J]. J Hepatol, 2022, 77( 2): 353- 364. DOI: 10.1016/j.jhep.2022.02.033.
|
| [38] |
FUCHS CD, TRAUNER M. Role of bile acids and their receptors in gastrointestinal and hepatic pathophysiology[J]. Nat Rev Gastroenterol Hepatol, 2022, 19( 7): 432- 450. DOI: 10.1038/s41575-021-00566-7.
|
| [39] |
HEMPFLING W, GRUNHAGE F, DILGER K, et al. Pharmacokinetics and pharmacodynamic action of budesonide in early-and late-stage primary biliary cirrhosis[J]. Hepatology, 2003, 38( 1): 196- 202. DOI: 10.1053/jhep.2003.50266.
|
| [40] |
NISHIO T, HU RL, KOYAMA Y, et al. Activated hepatic stellate cells and portal fibroblasts contribute to cholestatic liver fibrosis in MDR2 knockout mice[J]. J Hepatol, 2019, 71( 3): 573- 585. DOI: 10.1016/j.jhep.2019.04.012.
|
| [41] |
TRAUNER M, FUCHS CD. Novel therapeutic targets for cholestatic and fatty liver disease[J]. Gut, 2022, 71( 1): 194- 209. DOI: 10.1136/gutjnl-2021-324305.
|
| [42] |
BAGHDASARYAN A, CLAUDEL T, GUMHOLD J, et al. Dual farnesoid X receptor/TGR5 agonist INT-767 reduces liver injury in the Mdr2-/-(Abcb4-/-) mouse cholangiopathy model by promoting biliary HCO
|
| [43] |
GRACIA-SANCHO J, MARRONE G, FERNÁNDEZ-IGLESIAS A. Hepatic microcirculation and mechanisms of portal hypertension[J]. Nat Rev Gastroenterol Hepatol, 2019, 16( 4): 221- 234. DOI: 10.1038/s41575-018-0097-3.
|
| [44] |
ZHU CP, LIU SQ, WANG KQ, et al. Targeting 5-hydroxytryptamine receptor 1A in the portal vein to decrease portal hypertension[J]. Gastroenterology, 2024, 167( 5): 993- 1007. DOI: 10.1053/j.gastro.2024.06.007.
|
| [45] |
MOUSA OY, JURAN BD, MCCAULEY BM, et al. Bile acid profiles in primary sclerosing cholangitis and their ability to predict hepatic decompensation[J]. Hepatology, 2021, 74( 1): 281- 295. DOI: 10.1002/hep.31652.
|