中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R
Volume 41 Issue 10
Oct.  2025
Turn off MathJax
Article Contents

Research advances in the mechanism of traditional Chinese medicine for treatment of hepatic fibrosis

DOI: 10.12449/JCH251004
Research funding:

Hangzhou Key Projects in Agriculture and Social Development (20231203A10);

Hangzhou Science and Technology Bureau Biomedical Enterprise Project (2021WJCY362);

Hangzhou Science and Technology Bureau Biomedical Enterprise Project (2021WJCY186);

Hangzhou Science and Technology Bureau Biomedical Enterprise Project (2023WJC316);

Zhejiang Provincial Medical and Health Science and Technology Program (2025KY1134);

Construction Fund of Key Medical Disciplines of Hangzhou (2025HZGF09)

More Information
  • Corresponding author: BAO Jianfeng, zjbjf1972@aliyun.com (ORCID: 0000-0002-1130-8057)
  • Received Date: 2025-07-12
  • Accepted Date: 2025-08-05
  • Published Date: 2025-10-25
  • Hepatic fibrosis is a key intermediate stage in the progression of various chronic liver diseases to liver cirrhosis and liver cancer. Traditional Chinese medicine (TCM) has a good effect in the treatment of hepatic fibrosis, but its mechanism of action remains unclear. This article introduces the pathological mechanisms of hepatic fibrosis, including etiology and pathogenesis based on TCM theory and related mechanisms in Western medicine (such as hepatic stellate cell [HSC] activation, hepatic fibrosis driven by metabolic reprogramming, and key signaling pathways in hepatic fibrosis). On this basis, this article analyzes the core mechanisms of TCM in the treatment of hepatic fibrosis, including inhibiting HSC activation and proliferation, suppressing liver inflammation and modulating immunity, counteracting lipid peroxidation damage, regulating the synthesis and secretion of pro-fibrotic factors, maintaining the metabolic balance of extracellular matrix, regulating key signaling pathways, modulating gut microbiota, and inhibiting sinusoidal capillarization, in order to summarize the mechanism of action of TCM in the treatment of hepatic fibrosis and lay a foundation for better developing TCM-based therapeutics for hepatic fibrosis.

     

  • loading
  • [1]
    TARU V, SZABO G, MEHAL W, et al. Inflammasomes in chronic liver disease: Hepatic injury, fibrosis progression and systemic inflammation[J]. J Hepatol, 2024, 81( 5): 895- 910. DOI: 10.1016/j.jhep.2024.06.016.
    [2]
    Liver Disease Committee, Chinese Association of Integrative Medicine. Guidelines for the diagnosis and treatment of liver fibrosis in integrative medicine practice(2019)[J]. J Clin Hepatol, 2019, 35( 7): 1444- 1449. DOI: 10.3969/j.issn.1001-5256.2019.07.007.

    中国中西医结合学会肝病专业委员会. 肝纤维化中西医结合诊疗指南(2019年版)[J]. 临床肝胆病杂志, 2019, 35( 7): 1444- 1449. DOI: 10.3969/j.issn.1001-5256.2019.07.007.
    [3]
    DAWOOD RM, EL-MEGUID MA, SALUM GM, et al. Key players of hepatic fibrosis[J]. J Interferon Cytokine Res, 2020, 40( 10): 472- 489. DOI: 10.1089/jir.2020.0059.
    [4]
    KIM HY, SAKANE S, EGUILEOR A, et al. The origin and fate of liver myofibroblasts[J]. Cell Mol Gastroenterol Hepatol, 2024, 17( 1): 93- 106. DOI: 10.1016/j.jcmgh.2023.09.008.
    [5]
    ZHANG ZT, YU Y, PANG JA, et al. Metabolic reprogramming in liver fibrosis: Focusing on the metabolic network of hepatic macrophages and hepatic stellate cells[J]. Adv Clin Med, 2025, 15( 5): 931- 940. DOI: 10.12677/acm.2025.1551452.

    张沚汀, 俞渊, 庞浇安, 等. 肝纤维化的代谢重编: 聚焦于肝巨噬细胞与肝星状细胞的代谢网络[J]. 临床医学进展, 2025, 15( 5): 931- 940. DOI: 10.12677/acm.2025.1551452.
    [6]
    HE MJ, ZHAO CP, HU HH, et al. Research progress on action mechanism of TGF-β1/smad signaling pathway in liver fibrosis and TCM regulation[J]. Acta Chin Med, 2024, 39( 1): 114- 121. DOI: 10.16368/j.issn.1674-8999.2024.01.019.

    和梦静, 赵长普, 胡慧慧, 等. TGF-β1/Smad信号通路在肝纤维化中的作用机制及中医药调控研究进展[J]. 中医学报, 2024, 39( 1): 114- 121. DOI: 10.16368/j.issn.1674-8999.2024.01.019.
    [7]
    KOCH PS, SANDORSKI K, HEIL J, et al. Imbalanced activation of wnt-/ β-catenin-signaling in liver endothelium alters normal sinusoidal differentiation[J]. Front Physiol, 2021, 12: 722394. DOI: 10.3389/fphys.2021.722394.
    [8]
    WANG JC, HU KL, CAI XY, et al. Targeting PI3K/AKT signaling for treatment of idiopathic pulmonary fibrosis[J]. Acta Pharm Sin B, 2022, 12( 1): 18- 32. DOI: 10.1016/j.apsb.2021.07.023.
    [9]
    PING DB, SUN X, PENG Y, et al. Cyp4a12-mediated retinol metabolism in stellate cells is the antihepatic fibrosis mechanism of the Chinese medicine Fuzheng Huayu recipe[J]. Chin Med, 2023, 18( 1): 51. DOI: 10.1186/s13020-023-00754-4.
    [10]
    QI JS, PING DB, SUN X, et al. A herbal product inhibits carbon tetrachloride-induced liver fibrosis by suppressing the epidermal growth factor receptor signaling pathway[J]. J Ethnopharmacol, 2023, 311: 116419. DOI: 10.1016/j.jep.2023.116419.
    [11]
    SHAO C, XU HH, SUN XG, et al. Jiawei Taohe Chengqi decoction inhibition of the Notch signal pathway affects macrophage reprogramming to inhibit HSCs activation for the treatment of hepatic fibrosis[J]. J Ethnopharmacol, 2024, 321: 117486. DOI: 10.1016/j.jep.2023.117486.
    [12]
    ZHANG JB, JIN HL, FENG XY, et al. The combination of Lonicerae Japonicae Flos and Forsythiae Fructus herb-pair alleviated inflammation in liver fibrosis[J]. Front Pharmacol, 2022, 13: 984611. DOI: 10.3389/fphar.2022.984611.
    [13]
    SHANG XF, YUAN HX, DAI LX, et al. Anti-liver fibrosis activity and the potential mode of action of Ruangan Granules: Integrated network pharmacology and metabolomics[J]. Front Pharmacol, 2022, 12: 754807. DOI: 10.3389/fphar.2021.754807.
    [14]
    ZHANG ZW, WU JY, GAO MY. Therapeutic effect and mechanism of modified Chaihu Danggui decoction on liver fibrosis rat[J]. Henan Med Res, 2024, 33( 21): 3872- 3876. DOI: 10.3969/j.issn.1004-437X.2024.21.008.

    张正伟, 吴佳玉, 高梦月. 加味柴胡当归汤对大鼠肝纤维化的治疗效果及其机制[J]. 河南医学研究, 2024, 33( 21): 3872- 3876. DOI: 10.3969/j.issn.1004-437X.2024.21.008.
    [15]
    LI YR, ZHAO YF, CHENG GL, et al. Therapeutic effect of Jingfang Granules on CCl4-induced liver fibrosis in mice and its mechanism[J]. China J Chin Mater Med, 2022, 47( 22): 6127- 6136. DOI: 10.19540/j.cnki.cjcmm.20220530.402.

    李郁茹, 赵亚芳, 程国良, 等. 荆防颗粒对CCl4诱导小鼠肝纤维化的治疗作用及其机制研究[J]. 中国中药杂志, 2022, 47( 22): 6127- 6136. DOI: 10.19540/j.cnki.cjcmm.20220530.402.
    [16]
    QIN SL, WU M, ZHOU Y, et al. Effects of fuzheng Huayu formula on peripheral blood and hepatic lymphocyte subsets in mice with liver fibrosis[J]. Liaoning J Tradit Chin Med, 2025, 52( 5): 185- 189, 227. DOI: 10.13192/j.issn.1000-1719.2025.05.048.

    钦圣兰, 吴眉, 周扬, 等. 扶正化瘀方对肝纤维化小鼠外周血及肝内淋巴细胞亚群的影响[J]. 辽宁中医杂志, 2025, 52( 5): 185- 189, 227. DOI: 10.13192/j.issn.1000-1719.2025.05.048.
    [17]
    HUANG H, XU LM, PING J, et al. Value of Fuzheng Huayu prescription in preventing liver fibrosis by altering the phenotypic function of CD8+ T lymphocytes in the liver of mice with acute liver injury[J]. J Clin Hepatol, 2022, 38( 2): 342- 346. DOI: 10.3969/j.issn.1001-5256.2022.02.017.

    黄辉, 徐列明, 平键, 等. 扶正化瘀方通过改变急性肝损伤小鼠模型肝脏CD8+T淋巴细胞表型功能预防肝纤维化的价值分析[J]. 临床肝胆病杂志, 2022, 38( 2): 342- 346. DOI: 10.3969/j.issn.1001-5256.2022.02.017.
    [18]
    WU TH, WANG PW, LIN TY, et al. Antioxidant properties of red raspberry extract alleviate hepatic fibrosis via inducing apoptosis and transdifferentiation of activated hepatic stellate cells[J]. Biomed Pharmacother, 2021, 144: 112284. DOI: 10.1016/j.biopha.2021.112284.
    [19]
    WU XX, LU XL, JIANG YY, et al. Mechanistic study of ZeXie decoction in intervening NASH-related liver fibrosis via antioxidant stress pathways[J]. Lishizhen Med Mater Med Res, 2022, 33( 1): 39- 43. DOI: 10.3969/j.issn.1008-0805.2022.01.09.

    吴小溪, 陆孝良, 蒋元烨, 等. 泽泻汤通过抗氧化应激干预NASH肝纤维化的机制研究[J]. 时珍国医国药, 2022, 33( 1): 39- 43. DOI: 10.3969/j.issn.1008-0805.2022.01.09.
    [20]
    AN ZX, LI JF, DAI HZ, et al. Study on protective effect and mechanism of kiwifruit vine aqueous extract on hepatic fibrosis model rats[J]. Tradit Chin Drug Res Clin Pharmacol, 2022, 33( 4): 426- 432. DOI: 10.19378/j.issn.1003-9783.2022.04.002.

    安祯祥, 李金芳, 戴鸿志, 等. 猕猴桃藤水提物对肝纤维化模型大鼠的保护作用及机制研究[J]. 中药新药与临床药理, 2022, 33( 4): 426- 432. DOI: 10.19378/j.issn.1003-9783.2022.04.002.
    [21]
    SUN X, XIONG F, HUANG YS, et al. Effect of Gexia Zhuyu decoction on CCl4-induced liver fibrosis in rats and the mechanism[J]. World J Integr Tradit West Med, 2022, 17( 10): 1970- 1973, 1979. DOI: 10.13935/j.cnki.sjzx.221011.

    孙旭, 熊芬, 黄育生, 等. 膈下逐瘀汤对四氯化碳致大鼠肝纤维化的改善作用及机制初探[J]. 世界中西医结合杂志, 2022, 17( 10): 1970- 1973, 1979. DOI: 10.13935/j.cnki.sjzx.221011.
    [22]
    ZHANG GK, JIANG YY, LIU X, et al. Lingonberry anthocyanins inhibit hepatic stellate cell activation and liver fibrosis via TGFβ/smad/ERK signaling pathway[J]. J Agric Food Chem, 2021, 69( 45): 13546- 13556. DOI: 10.1021/acs.jafc.1c05384.
    [23]
    SHENG JP, ZHANG BH, CHEN YF, et al. Capsaicin attenuates liver fibrosis by targeting Notch signaling to inhibit TNF-α secretion from M1 macrophages[J]. Immunopharmacol Immunotoxicol, 2020, 42( 6): 556- 563. DOI: 10.1080/08923973.2020.1811308.
    [24]
    HUANG Y, XIA L, LEI QS, et al. Protective effects and mechanism of saikosaponin D on immune hepatic fibrosis in rats[J]. J Army Med Univ, 2022, 44( 14): 1410- 1420. DOI: 10.16016/j.2097-0927.202111062.

    黄祎, 夏莉, 雷青松, 等. 柴胡皂苷D对大鼠免疫性肝纤维化的保护作用及其机制研究[J]. 陆军军医大学学报, 2022, 44( 14): 1410- 1420. DOI: 10.16016/j.2097-0927.202111062.
    [25]
    GUO XL, JIA ZS, ZHANG J. Molecular mechanisms of traditional Chinese medicine in reversing liver fibrosis[J]. J Clin Hepatol, 2025, 41( 1): 170- 175. DOI 10.12449/JCH250126. DOI: 10.12449/JCH250126

    郭晓玲, 贾战生, 张静. 中药逆转肝纤维化的分子机制[J]. 临床肝胆病杂志, 2025, 41( 1): 170- 175. DOI: 10.12449/JCH250126.
    [26]
    LI Q, WU HC, TAN JX, et al. Study on machanism of Rougan Formula in anti-hepatic fibrosis by inhibiting fibrosin[J]. Chin J Immunol, 2022, 38( 3): 263- 269. DOI: 10.3969/j.issn.1000-484X.2022.03.002.

    李茜, 吴惠春, 谭家鑫, 等. 柔肝方通过抑制纤维化蛋白抗肝纤维化的机制研究[J]. 中国免疫学杂志, 2022, 38( 3): 263- 269. DOI: 10.3969/j.issn.1000-484X.2022.03.002.
    [27]
    LI ZB, JIANG L, NI JD, et al. Salvianolic acid B suppresses hepatic fibrosis by inhibiting ceramide glucosyltransferase in hepatic stellate cells[J]. Acta Pharmacol Sin, 2023, 44( 6): 1191- 1205. DOI: 10.1038/s41401-022-01044-9.
    [28]
    WU HY, GU YQ, ZHOU HC, et al. Effects of cycloastragenol on carbon tetrachloride-induced hepatic fibrosis and glycolysis in mice[J]. China Pharm, 2022, 33( 14): 1677- 1681, 1687. DOI: 10.6039/j.issn.1001-0408.2022.14.03.

    吴红雁, 顾亚琴, 周红成, 等. 环黄芪醇对四氯化碳致小鼠肝纤维化及糖酵解的影响[J]. 中国药房, 2022, 33( 14): 1677- 1681, 1687. DOI: 10.6039/j.issn.1001-0408.2022.14.03.
    [29]
    XU LJ, ZHANG YR, JI NB, et al. Tanshinone IIA regulates the TGF-β1/Smad signaling pathway to ameliorate non-alcoholic steatohepatitis-related fibrosis[J]. Exp Ther Med, 2022, 24( 1): 486. DOI: 10.3892/etm.2022.11413.
    [30]
    LIU ZL, XU BG, DING YP, et al. Guizhi Fuling pill attenuates liver fibrosis in vitro and in vivo via inhibiting TGF-β1/Smad2/3 and activating IFN-γ/Smad7 signaling pathways[J]. Bioengineered, 2022, 13( 4): 9357- 9368. DOI: 10.1080/21655979.2022.2054224.
    [31]
    ZHOU D, DONG JJ, CHENG N, et al. Study on the mechanism of Gandou decoction Ⅱ in regulating TGF-β1/smad pathway to inhibit hepatic fibrosis in Wilson disease mice[J]. Chin J Inf Tradit Chin Med, 2024, 31( 5): 61- 67. DOI: 10.19879/j.cnki.1005-5304.202310283.

    周丹, 董健健, 程楠, 等. 肝豆汤Ⅱ号调控TGF-β1/Smad通路抑制肝豆状核变性小鼠肝纤维化的机制研究[J]. 中国中医药信息杂志, 2024, 31( 5): 61- 67. DOI: 10.19879/j.cnki.1005-5304.202310283.
    [32]
    SUN X, XIONG F, HUANG YS, et al. Effect of Gexia Zhuyu decoction on the Wnt/β-catenin pathway in carbon tetrachloride-induced hepatic fibrosis rats[J]. Chin Tradit Pat Med, 2022, 44( 6): 1945- 1950. DOI: 10.3969/j.issn.1001-1528.2022.06.039.

    孙旭, 熊芬, 黄育生, 等. 膈下逐瘀汤对四氯化碳诱导的肝纤维化大鼠Wnt/β-catenin通路的影响[J]. 中成药, 2022, 44( 6): 1945- 1950. DOI: 10.3969/j.issn.1001-1528.2022.06.039.
    [33]
    TANG Y, LIANG JY, SIMA L, et al. Exploration of the effect and mechanism of Shuangzhu Kangxian prescription in improving carbon tetrachloride-induced hepatitic fibrosis in rats based on Wnt/β-catenin signaling pathway[J]. Tradit Chin Drug Res Clin Pharmacol, 2024, 35( 3): 334- 341. DOI: 10.19378/j.issn.1003-9783.2024.03.004.

    唐燕, 梁瀞云, 司马玲, 等. 基于Wnt/β-catenin信号通路探讨双术抗纤方改善四氯化碳诱导大鼠肝纤维化的作用及机制[J]. 中药新药与临床药理, 2024, 35( 3): 334- 341. DOI: 10.19378/j.issn.1003-9783.2024.03.004.
    [34]
    SONG WS, YU Y. Diosgenin reduces liver fibrosis induced by carbon tetrachloride and its mechanism[J]. Pharm Biotechnol, 2022, 29( 3): 261- 266. DOI: 10.19526/j.cnki.1005-8915.20220308.

    宋维珊, 俞岩. 薯蓣皂苷降低四氯化碳致大鼠肝纤维化作用及其机制的研究[J]. 药物生物技术, 2022, 29( 3): 261- 266. DOI: 10.19526/j.cnki.1005-8915.20220308.
    [35]
    XIE JC, MENG J, GOU SY, et al. Exploring the mechanism of Xuefuzhuyu Decoction in treating liver fibrosis based on network pharmacology and animal experiments[J]. Chin J Integr Tradit West Med Liver Dis, 2025, 35( 4): 430- 437. DOI: 10.3969/j.issn.1005-0264.2025.004.008.

    谢金池, 孟捷, 苟思媛, 等. 基于网络药理学与动物实验探究血府逐瘀汤治疗肝纤维化的作用机制[J]. 中西医结合肝病杂志, 2025, 35( 4): 430- 437. DOI: 10.3969/j.issn.1005-0264.2025.004.008.
    [36]
    LI MQ, WANG YH, ZHAO XL, et al. Mechanism of total flavonoids of Carthamus tinctorius L. against hepatic fibrosis based on LC-MS/MS combined with network pharmacology and pharmacology experiments[J]. Chin J Clin Pharmacol Ther, 2025, 30( 5): 586- 598. DOI: 10.12092/j.issn.1009-2501.2025.05.002.

    李明奇, 王映荷, 赵晓璐, 等. 基于LC-MS/MS结合网络药理学、分子对接及体内外实验探究红花总黄酮抗肝纤维化的作用机制[J]. 中国临床药理学与治疗学, 2025, 30( 5): 586- 598. DOI: 10.12092/j.issn.1009-2501.2025.05.002.
    [37]
    SUN JR, LU BJ, ZHENG JL, et al. Effect and mechanism of Fuzheng Huaxian prescription on hepatic fibrosis mice by regulating PI3K/AKT/BAD signaling pathway[J]. Tradit Chin Drug Res Clin Pharmacol, 2024, 35( 11): 1652- 1660. DOI: 10.19378/j.issn.1003-9783.2024.11.003.

    孙竞然, 卢秉久, 郑佳连, 等. 扶正化纤方调控PI3K/AKT/BAD信号通路对肝纤维化小鼠的作用及机制[J]. 中药新药与临床药理, 2024, 35( 11): 1652- 1660. DOI: 10.19378/j.issn.1003-9783.2024.11.003.
    [38]
    HE XY, LIANG JT, LI X, et al. Dahuang Zhechong pill ameliorates hepatic fibrosis by regulating gut microbiota and metabolites[J]. J Ethnopharmacol, 2024, 321: 117402. DOI: 10.1016/j.jep.2023.117402.
    [39]
    ZHAO YH, ZHAO M, ZHANG YM, et al. Bile acids metabolism involved in the beneficial effects of Danggui Shaoyao San via gut microbiota in the treatment of CCl4 induced hepatic fibrosis[J]. J Ethnopharmacol, 2024, 319( Pt 3): 117383. DOI: 10.1016/j.jep.2023.117383.
    [40]
    TRANAH TH, EDWARDS LA, SCHNABL B, et al. Targeting the gut-liver-immune axis to treat cirrhosis[J]. Gut, 2021, 70( 5): 982- 994. DOI: 10.1136/gutjnl-2020-320786.
    [41]
    JIA KX, ZHANG YH, LUO RY, et al. Acteoside ameliorates hepatic ischemia-reperfusion injury via reversing the senescent fate of liver sinusoidal endothelial cells and restoring compromised sinusoidal networks[J]. Int J Biol Sci, 2023, 19( 15): 4967- 4988. DOI: 10.7150/ijbs.87332.
    [42]
    SUN WQ, HUANG Y, HAN T, et al. To explore mechanism of Qingdu Tiaogan decoction in treating hepatic fibrosis based on sinusoid capillarization[J]. J Xinjiang Med Univ, 2024, 47( 9): 1293- 1300. DOI: 10.3969/j.issn.1009-5551.2024.09.018.

    孙婉卿, 黄勇, 韩涛, 等. 基于肝窦毛细血管化探讨清毒调肝方治疗肝纤维化的作用机制[J]. 新疆医科大学学报, 2024, 47( 9): 1293- 1300. DOI: 10.3969/j.issn.1009-5551.2024.09.018.
    [43]
    LIU J, XU XY, LIU JB, et al. Mechanism of Qijia Rougan Decoction and its disassembled formulas on regulation of VEGF/SRF/c-FOS pathway and improvement of hepatic sinusoidal capillaryization in rats with hepatic fibrosis[J]. China J Chin Mater Med, 2024, 49( 20): 5528- 5538. DOI: 10.19540/j.cnki.cjcmm.20240710.401.

    刘进, 许欣怡, 刘悸斌, 等. 芪甲柔肝方及其拆方调控VEGF/SRF/c-FOS通路与改善肝纤维化大鼠肝窦毛细血管化的机制研究[J]. 中国中药杂志, 2024, 49( 20): 5528- 5538. DOI: 10.19540/j.cnki.cjcmm.20240710.401.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (82) PDF downloads(28) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return