中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

鸢尾黄素(TEC)对肝癌细胞活力、迁移和凋亡的影响及其机制

唐文敏 程明亮 祝娟娟

引用本文:
Citation:

鸢尾黄素(TEC)对肝癌细胞活力、迁移和凋亡的影响及其机制

DOI: 10.12449/JCH251019
基金项目: 

贵州省科技厅基础研究计划项目 (Qiankehe Foundation-ZK (2022) General 452);

国家自然科学基金地区基金 (82160119);

国家自然科学基金地区基金 (82360122)

利益冲突声明:本文不存在任何利益冲突。
作者贡献声明:唐文敏负责实施研究,采集数据,分析/解析数据,起草文章,修改文章,统计分析;程明亮负责对文章的知识性内容审阅,研究指导;祝娟娟负责设计实验,对文章的知识性内容审阅,统计分析,获取研究经费。
详细信息
    通信作者:

    祝娟娟, 184184239@qq.com (ORCID: 0009-0002-4999-4248)

Effect of tectorigenin on the viability, migration, and apoptosis of hepatoma cells and its mechanism

Research funding: 

The Basic Research Program of Guizhou Provincial Science and Technology Department (Qiankehe Foundation-ZK (2022) General 452);

National Natural Science Foundation of China Regional Funds (82160119);

National Natural Science Foundation of China Regional Funds (82360122)

More Information
    Corresponding author: ZHU Juanjuan, 184184239@qq.com (ORCID: 0009-0002-4999-4248)
  • 摘要:   目的  观察蓝莓单体鸢尾黄素(TEC)对肝癌细胞系HepG2、Huh7细胞的影响,并探讨其作用机制。  方法  从蓝莓中提取纯化TEC;利用生物信息学进行靶基因及信号通路筛选;分别采用HepG2、Huh7细胞系,并设置4个TEC浓度处理组(0、30、60和90 μg/mL)进行实验。通过CCK-8法检测细胞活力;划痕实验、Transwell实验评估迁移能力;流式细胞术检测凋亡率;Western Blot检测CCNB1、p53、MDM2、Bax、Bcl-2和active-Caspase 3蛋白表达。构建CCNB1低表达(共5组:NC组、si-NC组、si-NC+TEC组、si-CCNB1组和si-CCNB1+TEC组)和过表达(共4组:OE-NC组、OE-NC+TEC组、OE-CCNB1组和OE-CCNB1+TEC组)细胞模型验证靶点。计量资料多组间比较采用单因素方差分析或双因素方差分析,进一步两两比较采用LSD-t检验。癌组织及癌旁组织间基因表达量的比较采用Wilcoxon符号秩和检验。  结果  在HepG2、Huh7细胞中,同一TEC浓度下,TEC干预24 h时细胞存活率显著低于12 h和48 h(P值均<0.05);在干预时间为24 h时,TEC 90 μg/mL浓度组的细胞存活率均显著低于其他浓度组(P值均<0.05)。故采用TEC浓度为90 μg/mL、干预时长为24 h进行后续实验。与TEC 0 μg/mL组相比,30、60、90 μg/mL浓度组细胞的迁移数量及划痕愈合率均显著降低(P值均<0.05);与NC组及si-NC组相比,HepG2和Huh7细胞si-NC+TEC组及si-CCNB1组的迁移细胞数目、划痕愈合率均出现了明显的下降(P值均<0.05)。与NC组及si-NC组相比,HepG2和Huh7细胞si-NC+TEC组、si-CCNB1组的细胞凋亡率均显著上升(P值均<0.05)。在HepG2细胞中,与0 μg/mL组相比,30、60、90 μg/mL浓度组均表现出CCNB1和Bcl-2蛋白表达水平的下调(P值均<0.05),60和90 μg/mL浓度组p53、Bax、active-Caspase 3蛋白表达水平上调(P值均<0.001),同时伴随MDM2蛋白表达的降低(P值均<0.05)。在Huh7细胞中,与0 μg/mL组相比,30、60和90 μg/mL组CCNB1蛋白表达降低(P值均<0.01);60和90 μg/mL浓度组p53和Bax蛋白表达显著上调,MDM2蛋白下调(P值均<0.05);90 μg/mL浓度组Bcl-2蛋白表达下调、active-Caspase 3蛋白表达上调(P值均<0.01)。与si-NC组相比,HepG2和Huh7细胞中si-NC+TEC组及si-CCNB1组CCNB1、MDM2、Bcl-2蛋白的表达水平均显著下调,p53和Bax蛋白的表达水平均显著上调(P值均<0.05)。与OE-NC组相比,HepG2和Huh7细胞OE-NC+TEC组CCNB1、MDM2显著下调,p53蛋白水平上调(P值均<0.05),而OE-CCNB1组的CCNB1和MDM2蛋白表达水平均显著上调,p53蛋白表达水平则显著下调(P值均<0.05);OE-CCNB1组与OE-CCNB1+TEC组间CCNB1、MDM2及p53的蛋白表达水平比较差异均无统计学意义(P值均>0.05)。  结论  TEC可在体外抑制HepG2和Huh7细胞增殖、迁移,促进细胞凋亡,其机制可能是通过下调CCNB1表达,激活p53信号通路。

     

  • 注: a,鸢尾苷与TEC标准品的HPLC图谱;b,实验所得提取物的HPLC图谱。

    图  1  HPLC图谱

    Figure  1.  HPLC chromatograms

    注: a,GSE101685、GSE6764、GSE121248数据集中肝癌差异表达基因KEGG富集分析;b,肝癌组织和癌旁组织关键基因表达差异热图;c,数据集合中上调的差异基因与细胞周期相关基因交集;d,HepG2、Huh7细胞CCNB1、CDK1、CCNE2、CDKN2C、MCM6、CDKN2A mRNA相对表达量(与CCNB1相比,***P<0.001,n=3);e,CCNB1在肝癌组织与癌旁组织中的表达差异;f,GTEx数据库中CCNB1表达与肝癌患者的总生存期及无病生存期的关系。

    图  2  CCNB1在肝癌组织中高表达

    Figure  2.  CCNB1 is highly expressed in hepatocellular carcinoma tissues

    图  3  各组细胞Transwell实验结果(结晶紫染色,×100)

    Figure  3.  The results of Transwell experiment in each group of cells (crystal violet staining,×100)

    图  4  各组细胞划痕实验结果

    Figure  4.  The results of cell scratch test in each group

    图  5  敲低CCNB1后各组细胞Transwell实验结果(结晶紫染色,×100)

    Figure  5.  Results of Transwell assay after CCNB1 knockdown in each group of cells (crystal violet staining,×100)

    图  6  敲低CCNB1后各组细胞划痕实验结果

    Figure  6.  Scratch images of cells in each group after knockdown of CCNB1

    图  7  敲低CCNB1后各组细胞的凋亡情况比较

    Figure  7.  Comparison of apoptosis in different groups of cells after knockdown of CCNB1

    图  8  各组细胞蛋白表达水平比较

    Figure  8.  Comparison of protein expression levels among different groups of cells

    图  9  敲低CCNB1后各组细胞蛋白表达水平比较

    Figure  9.  Comparison of protein expression levels in different groups of cells after knockdown of CCNB1

    图  10  过表达CCNB1后各组细胞蛋白表达水平比较

    Figure  10.  Comparison of protein expression levels in different groups of cells after overexpression of CCNB1

    表  1  HepG2和Huh7细胞经不同浓度TEC干预后各组存活率比较

    Table  1.   The effect of different concentrations of TEC on the survival rate of HepG2 and Huh7 cells

    TEC浓度
    (μg/mL)
    细胞存活率
    12 h 24 h 48 h
    HepG2
    0 1.0001) 1.0001) 1.0001)
    30 0.829±0.1021)2) 0.647±0.0421) 0.911±0.0901)2)
    60 0.749±0.0871)2) 0.588±0.0641) 0.839±0.0342)
    90 0.585±0.0622) 0.516±0.055 0.742±0.0962)
    Huh7
    0 1.0001) 1.0001) 1.000
    30 0.937±0.0521)2) 0.803±0.0291) 0.983±0.0342)
    60 0.843±0.0382) 0.752±0.0571) 0.987±0.0512)
    90 0.812±0.1312) 0.734±0.063 0.913±0.0922)

    注:与同一时间点内TEC浓度为90 μg/mL组比较,1) P<0.05;与同一TEC浓度内干预时长为24 h比较,2) P<0.05。

    下载: 导出CSV
  • [1] TOH MR, WONG EYT, WONG SH, et al. Global epidemiology and genetics of hepatocellular carcinoma[J]. Gastroenterology, 2023, 164( 5): 766- 782. DOI: 10.1053/j.gastro.2023.01.033.
    [2] SILVA S, COSTA EM, VEIGA M, et al. Health promoting properties of blueberries: A review[J]. Crit Rev Food Sci Nutr, 2020, 60( 2): 181- 200. DOI: 10.1080/10408398.2018.1518895.
    [3] ZHAN W, LIAO X, YU L, et al. Effects of blueberries on migration, invasion, proliferation, the cell cycle and apoptosis in hepatocellular carcinoma cells[J]. Biomed Rep, 2016, 5( 5): 579- 584. DOI: 10.3892/br.2016.774.
    [4] RONG J, FU F, HAN CX, et al. Tectorigenin: A review of its sources, pharmacology, toxicity, and pharmacokinetics[J]. Molecules, 2023, 28( 15): 5904. DOI: 10.3390/molecules28155904.
    [5] JIANG CP, DING H, SHI DH, et al. Pro-apoptotic effects of tectorigenin on human hepatocellular carcinoma HepG2 cells[J]. World J Gastroenterol, 2012, 18( 15): 1753- 1764. DOI: 10.3748/wjg.v18.i15.1753.
    [6] YEH LT, HSU LS, CHUNG YH, et al. Tectorigenin inhibits glioblastoma proliferation by G0/G1 cell cycle arrest[J]. Medicina(Kaunas), 2020, 56( 12): 681. DOI: 10.3390/medicina56120681.
    [7] ZENG LW, YUAN SF, SHEN JL, et al. Suppression of human breast cancer cells by tectorigenin through downregulation of matrix metalloproteinases and MAPK signaling in vitro[J]. Mol Med Rep, 2018, 17( 3): 3935- 3943. DOI: 10.3892/mmr.2017.8313.
    [8] FANG R, HOUGHTON PJ, HYLANDS PJ. Cytotoxic effects of compounds from Iris tectorum on human cancer cell lines[J]. J Ethnopharmacol, 2008, 118( 2): 257- 263. DOI: 10.1016/j.jep.2008.04.006.
    [9] YANG YJ, KE TY, LIU SX, et al. Synergistic sensitization of apatinib mesylate and radiotherapy on hepatocarcinoma cells in vitro[J]. J Jilin Univ(Med Edit), 2024, 50( 4): 1009- 1015. DOI: 10.13481/j.1671-587X.2024-04015.

    杨永净, 柯天洋, 刘士新, 等. 甲磺酸阿帕替尼联合放疗对肝癌HepG2细胞的体外协同增敏作用[J]. 吉林大学学报(医学版), 2024, 50( 4): 1009- 1015. DOI: 10.13481/j.1671-587X.202404015.
    [10] NAEEM A, HU PY, YANG M, et al. Natural products as anticancer agents: Current status and future perspectives[J]. Molecules, 2022, 27( 23): 8367. DOI: 10.3390/molecules27238367.
    [11] ZHAN G, PAN LQ, TU K, et al. Antitumor, antioxidant, and nitrite scavenging effects of Chinese water chestnut(Eleocharis dulcis) peel flavonoids[J]. J Food Sci, 2016, 81( 10): H2578- H2586. DOI: 10.1111/1750-3841.13434.
    [12] KIM EM, JUNG CH, KIM J, et al. The p53/p21 complex regulates cancer cell invasion and apoptosis by targeting bcl-2 family proteins[J]. Cancer Res, 2017, 77( 11): 3092- 3100. DOI: 10.1158/0008-5472.CAN-16-2098.
    [13] GAVET O, PINES J. Progressive activation of CyclinB1-Cdk1 coordinates entry to mitosis[J]. Dev Cell, 2010, 18( 4): 533- 543. DOI: 10.1016/j.devcel.2010.02.013.
    [14] FANG YF, YU H, LIANG X, et al. Chk1-induced CCNB1 overexpression promotes cell proliferation and tumor growth in human colorectal cancer[J]. Cancer Biol Ther, 2014, 15( 9): 1268- 1279. DOI: 10.4161/cbt.29691.
    [15] LUNDGREN C, AHLIN C, HOLMBERG L, et al. Cyclin E1 is a strong prognostic marker for death from lymph node negative breast cancer. A population-based case-control study[J]. Acta Oncol, 2015, 54( 4): 538- 544. DOI: 10.3109/0284186X.2014.965274.
    [16] ZHOU L, LI J, ZHAO YP, et al. The prognostic value of Cyclin B1 in pancreatic cancer[J]. Med Oncol, 2014, 31( 9): 107. DOI: 10.1007/s12032-014-0107-4.
    [17] ZOU YP, RUAN SY, JIN L, et al. CDK1, CCNB1, and CCNB2 are prognostic biomarkers and correlated with immune infiltration in hepatocellular carcinoma[J]. Med Sci Monit, 2020, 26: e925289. DOI: 10.12659/MSM.925289.
    [18] WANG HL, GUO M, WEI HD, et al. Targeting p53 pathways: Mechanisms, structures, and advances in therapy[J]. Signal Transduct Target Ther, 2023, 8( 1): 92. DOI: 10.1038/s41392-023-01347-1.
    [19] KOO N, SHARMA AK, NARAYAN S. Therapeutics targeting p53-MDM2 interaction to induce cancer cell death[J]. Int J Mol Sci, 2022, 23( 9): 5005. DOI: 10.3390/ijms23095005.
    [20] LOU J, ZHAO L, ZHU YJ, et al. Effect of Fuzheng Ruanjian Anticancer Formula on malignant biological behaviors of hepatocellulars carcinoma HepG2 cells by regulating Akt/MDM2/P53 signaling pathway[J]. J Jilin Univ(Med Edit), 2024, 50( 6): 1654- 1663. DOI: 10.13481/j.1671-587X.20-240619.

    娄静, 赵雷, 朱岩洁, 等. 扶正软坚抗癌方调控Akt/MDM2/P53信号通路对肝癌HepG2细胞恶性生物学行为的影响[J]. 吉林大学学报(医学版), 2024, 50( 6): 1654- 1663. DOI: 10.13481/j.1671-587X.20240619.
    [21] YUAN JP, YAN RL, KRÄMER A, et al. Cyclin B1 depletion inhibits proliferation and induces apoptosis in human tumor cells[J]. Oncogene, 2004, 23( 34): 5843- 5852. DOI: 10.1038/sj.onc.1207757.
    [22] ZHANG H, ZHANG X, LI X, et al. Effect of CCNB1 silencing on cell cycle, senescence, and apoptosis through the p53 signaling pathway in pancreatic cancer[J]. J Cell Physiol, 2018, 234( 1): 619- 631. DOI: 10.1002/jcp.26816.
    [23] XIA P, ZHANG H, XU KQ, et al. MYC-targeted WDR4 promotes proliferation, metastasis, and sorafenib resistance by inducing CCNB1 translation in hepatocellular carcinoma[J]. Cell Death Dis, 2021, 12( 7): 691. DOI: 10.1038/s41419-021-03973-5.
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  46
  • HTML全文浏览量:  23
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-24
  • 录用日期:  2025-04-14
  • 出版日期:  2025-10-25
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回