人工智能结合多模态影像融合技术在肝脏外科中的应用
DOI: 10.12449/JCH251101
利益冲突声明:本文不存在任何利益冲突。
作者贡献声明:吴晓勤负责设计论文框架,撰写论文;汪珍光负责拟定写作思路,论文修改;刘辉负责指导撰写文章并最后定稿。
Application of artificial intelligence combined with multimodal image fusion technology in liver surgery
-
摘要: 在全球范围内,肝癌的发病率和死亡率位居前列,严重威胁着人民的生命健康。本文简述了多模态影像融合技术和人工智能技术的原理与特点,分析了两者在肝脏外科的具体应用,并对其临床价值与未来发展前景进行了展望,以期为肝脏疾病的外科诊疗提供参考。Abstract: Globally, the incidence and mortality rates of liver cancer rank among the highest, posing a serious threat to the life and health of people. This article elaborates on the principles and characteristics of multimodal image fusion technology and artificial intelligence technology, analyzes their specific application in liver surgery, and highlights their clinical value and future development prospects, in order to provide a reference for the surgical diagnosis and treatment of liver diseases.
-
Key words:
- Artificial Intelligence /
- Image Fusion Technology /
- Liver Surgery
-
[1] ZHENG RS, CHEN R, HAN BF, et al. Cancer incidence and mortality in China, 2022[J]. Chin J Oncol, 2024, 46( 3): 221- 231. DOI: 10.3760/cma.j.cn112152-20240119-00035.郑荣寿, 陈茹, 韩冰峰, 等. 2022年中国恶性肿瘤流行情况分析[J]. 中华肿瘤杂志, 2024, 46( 3): 221- 231. DOI: 10.3760/cma.j.cn112152-20240119-00035. [2] SUN SQ. Application of digital imaging technology in liver surgery[J]. J Shandong Med Coll, 2020, 42( 4): 283- 284. DOI: 10.3969/j.issn.1674-0947.2020.04.022.孙士强. 数字化影像技术在肝脏外科中的应用[J]. 山东医学高等专科学校学报, 2020, 42( 4): 283- 284. DOI: 10.3969/j.issn.1674-0947.2020.04.022. [3] ZHOU WJ. Research on classification of liver lesions based on the fusion of multi-phase CT image features[D]. Changsha: Central South University of Forestry and Technology, 2025.周文静. 基于多期相CT影像特征融合的肝脏病灶分类研究[D]. 长沙: 中南林业科技大学, 2025. [4] ZHANG HJ, ZHANG HJ, LUO KC. Diagnostic value of MRI and enhanced CT in hepatocellular carcinoma[J]. J Imag Res Med Appl, 2025, 9( 10): 137- 139. DOI: 10.20267/j.issn.2096-3807.2025.10.043.张海军, 张宏娟, 骆科纯. MRI与增强CT检查对肝癌的诊断价值[J]. 影像研究与医学应用, 2025, 9( 10): 137- 139. DOI: 10.20267/j.issn.2096-3807.2025.10.043. [5] Chinese Society of Ultrasound in Medicine, Oncology Intervention Committee of Chinese Research Hospital Society, National Health Commission Capacity Building and Continuing Education Expert Committee on Ultrasonic Diagnosis. Guideline for ultrasonic diagnosis of liver diseases[J]. J Clin Hepatol, 2021, 37( 8): 1770- 1785. DOI: 10.3969/j.issn.1001-5256.2021.08.007.中华医学会超声医学分会, 中国研究型医院学会肿瘤介入专业委员会, 国家卫生和健康委员会能力建设和继续教育中心超声医学专家委员会. 肝病超声诊断指南[J]. 临床肝胆病杂志, 2021, 37( 8): 1770- 1785. DOI: 10.3969/j.issn.1001-5256.2021.08.007. [6] LUO XD, DONG JQ. Application value of 18F-FDG PET/CT in the differential diagnosis of benign and malignant liver tumors[J]. Clin Med Eng, 2024, 31( 8): 897- 898. DOI: 10.3969/j.issn.1674-4659.2024.08.0897.罗晓东, 董军强. 18F-FDG PET/CT在肝脏良恶性肿瘤鉴别诊断中的应用价值[J]. 临床医学工程, 2024, 31( 8): 897- 898. DOI: 10.3969/j.issn.1674-4659.2024.08.0897. [7] YANG J, LUO W, XIANG N, et al. Application value of multimodal image fusion technology in the diagnosis and treatment of intrahepatic cholangiocarcinoma[J]. Chin J Dig Surg, 2019, 18( 2): 176- 182. DOI: 10.3760/cma.j.issn.1673-9752.2019.02.013.杨剑, 罗旺, 项楠, 等. 多模态影像融合技术在肝内胆管癌诊断与治疗中的应用价值[J]. 中华消化外科杂志, 2019, 18( 2): 176- 182. DOI: 10.3760/cma.j.issn.1673-9752.2019.02.013. [8] GORE JC. Artificial intelligence in medical imaging[J]. Magn Reson Imaging, 2020, 68: A1- A4. DOI: 10.1016/j.mri.2019.12.006. [9] ERICKSON BJ, KORFIATIS P, AKKUS Z, et al. Machine learning for medical imaging[J]. RadioGraphics, 2017, 37( 2): 505- 515. DOI: 10.1148/rg.2017160130. [10] HUANG XD, HUANG H, LIU JJ, et al. Comparative study of decision tree, support vector machine and deep learning model in differential diagnosis of liver cancer[J]. J Med Inf, 2023, 36( 15): 70- 74. DOI: 10.3969/j.issn.1006-1959.2023.15.012.黄辛迪, 黄慧, 刘佳俊, 等. 决策树及支持向量机与深度学习模型在肝癌鉴别诊断中的比较研究[J]. 医学信息, 2023, 36( 15): 70- 74. DOI: 10.3969/j.issn.1006-1959.2023.15.012. [11] LI GZ, WANG HL, CHEN XQ, et al. Comparison of random forest and Cox regression models for predicting long-term survival after radical resection of HBV-associated hepatocellular carcinoma[J]. Chin J Curr Adv Gen Surg, 2025, 28( 5): 355- 360. DOI: 10.3969/j.issn.1009-9905.2025.05.004.李广洲, 王红雷, 陈喜全, 等. 随机森林与Cox回归模型对HBV相关肝细胞癌根治性切除术后长期生存预测的对比[J]. 中国现代普通外科进展, 2025, 28( 5): 355- 360. DOI: 10.3969/j.issn.1009-9905.2025.05.004. [12] WANG Q, WANG HZ, LU SD, et al. CNN model based on multi-parameter MR in predicting microvascular invasion of HCC[J]. J Hebei Med Univ, 2024, 45( 7): 771- 778. DOI: 10.3969/j.issn.1007-3205.2024.07.006.王谦, 王会哲, 卢双动, 等. 多参数MR为基础的CNN模型预测肝细胞性肝癌的微血管侵犯[J]. 河北医科大学学报, 2024, 45( 7): 771- 778. DOI: 10.3969/j.issn.1007-3205.2024.07.006. [13] ZHAO M, LIU FH, KANG LQ, et al. High-resolution MRI morphological features combined with radiomics for predicting lymph node metastasis in stage T1-2 rectal cancer[J]. J Clin Radiol, 2025, 44( 8): 1479- 1485. DOI: 10.13437/j.cnki.jcr.2025.08.001.赵梦, 刘凤海, 康立清, 等. 高分辨MRI形态学特征联合影像组学预测T1~2期直肠癌淋巴结转移[J]. 临床放射学杂志, 2025, 44( 8): 1479- 1485. DOI: 10.13437/j.cnki.jcr.2025.08.001. [14] ZHU L. The predictive value of enhanced CT combined with texture analysis for short-term recurrence of primary hepatocellular carcinoma after interventional therapy[J]. J Imag Res Med Appl, 2025, 9( 12): 12- 15. DOI: 10.20267/j.issn.2096-3807.2025.12.004.朱亮. 增强CT联合纹理分析对原发性肝癌介入治疗后短期复发的预测价值[J]. 影像研究与医学应用, 2025, 9( 12): 12- 15. DOI: 10.20267/j.issn.2096-3807.2025.12.004. [15] WEI XY, WANG LS, WANG YY, et al. Intelligent grading diagnosis of liver fibrosis, inflammation, and steatosis in chronic liver disease based on multimodal ultrasound imaging data[J]. J Cap Med Univ, 2023, 44( 6): 928- 935. DOI: 10.3969/j.issn.1006-7795.2023.06.004.魏星月, 王连双, 王媛媛, 等. 基于多模态超声成像数据的慢性肝病肝纤维化、炎症和脂肪变性的智能分级诊断[J]. 首都医科大学学报, 2023, 44( 6): 928- 935. DOI: 10.3969/j.issn.1006-7795.2023.06.004. [16] WANG JC, TANG SN, MAO YF, et al. Radiomics analysis of contrast-enhanced CT for staging liver fibrosis: An update for image biomarker[J]. Hepatol Int, 2022, 16( 3): 627- 639. DOI: 10.1007/s12072-022-10326-7. [17] ZHEN SH, CHENG M, TAO YB, et al. Deep learning for accurate diagnosis of liver tumor based on magnetic resonance imaging and clinical data[J]. Front Oncol, 2020, 10: 680. DOI: 10.3389/fonc.2020.00680. [18] HUANG YS, TIAN H, HAN SQ, et al. Application progress of three-dimensional econstruction and indocyanine green fluorescence navigation technology in precision hepatectomy[J]. Chin J Curr Adv Gen Surg, 2025, 28( 7): 563- 567. DOI: 10.3969/j.issn.1009-9905.2025.07.010.黄云崧, 田虎, 韩绍奇, 等. 三维重建和吲哚菁绿荧光导航技术在精准肝切除术中的应用进展[J]. 中国现代普通外科进展, 2025, 28( 7): 563- 567. DOI: 10.3969/j.issn.1009-9905.2025.07.010. [19] National Health Commission of the People’s Republic of China. Standard for diagnosis and treatment of primary liver cancer(2024 edition)[J]. J Clin Hepatol, 2024, 40( 5): 893- 918. DOI: 10.12449/JCH240508.中华人民共和国国家卫生健康委员会. 原发性肝癌诊疗指南(2024年版)[J]. 临床肝胆病杂志, 2024, 40( 5): 893- 918. DOI: 10.12449/JCH240508. [20] ALI O, BÔNE A, ACCARDO C, et al. Automatic generation of liver virtual models with artificial intelligence: Application to liver resection complexity prediction[J]. Ann Surg, 2025. DOI: 10.1097/SLA.0000000000006722.[ Epub ahead of print] [21] TAKAMOTO T, BAN D, NARA S, et al. Automated three-dimensional liver reconstruction with artificial intelligence for virtual hepatectomy[J]. J Gastrointest Surg, 2022, 26( 10): 2119- 2127. DOI: 10.1007/s11605-022-05415-9. [22] CHENG C, LU MC, ZHANG Y. Meta-analysis of effectiveness and safety of three-dimensional visualization technique to assist laparoscopic surgery for liver cancer[J]. Chin Med Equip J, 2023, 44( 8): 79- 84. DOI: 10.19745/j.1003-8868.2023166.程聪, 陆马乘, 张烨. 三维可视化技术辅助肝癌腹腔镜手术的有效性和安全性的Meta分析[J]. 医疗卫生装备, 2023, 44( 8): 79- 84. DOI: 10.19745/j.1003-8868.2023166. [23] ZHANG WQ, ZHU W, YANG J, et al. Augmented reality navigation for stereoscopic laparoscopic anatomical hepatectomy of primary liver cancer: Preliminary experience[J]. Front Oncol, 2021, 11: 663236. DOI: 10.3389/fonc.2021.663236. [24] SITTISART P, LOCHAROENRAT K. Use of Ag-Au-ICG to increase fluorescence image of human hepatocellular carcinoma cell lines[J]. Artif Cells Nanomed Biotechnol, 2023, 51( 1): 139- 147. DOI: 10.1080/21691401.2023.2186887. [25] YUE KK, WU DS, HUANG YD, et al. Application of indocyanine green fluorescence imaging in laparoscopic hepatectomy for stage B hepatocellular carcinoma in Barcelona[J]. J Basic Clin Oncol, 2024, 37( 4): 417- 420. DOI: 10.3969/j.issn.1673-5412.2024.04.012.岳珂珂, 吴大帅, 黄运德, 等. 吲哚菁绿荧光成像技术在巴塞罗那肝癌分期B期肝细胞肝癌行腹腔镜肝切除术中的应用[J]. 肿瘤基础与临床, 2024, 37( 4): 417- 420. DOI: 10.3969/j.issn.1673-5412.2024.04.012. [26] HU MQ, CHEN ZB, XU DW, et al. Efficacy and safety of indocyanine green fluorescence navigation versus conventional laparoscopic hepatectomy for hepatocellular carcinoma: A systematic review and meta-analysis[J]. Surg Endosc, 2025, 39( 3): 1681- 1695. DOI: 10.1007/s00464-024-11518-y. [27] Expert Group of the State Key Project on Infectious Diseases on“Novel Strategies of Comprehensive and Individualizd Surgical Treatment of Viral Hepatitisrelated Liver Cancer” from the Ministry of Science and Technology of China. Chinese expert consensus on the preventation and management of recurrent hepatocellular carcinoma after hepatic resection(2020 edition)[J]. Chin J Pract Surg, 2021, 41( 1): 20- 30. DOI: 10.19538/j.cjps.issn1005-2208.2021.01.03.国家科技部传染病防治重大专项课题《病毒性肝炎相关肝癌外科综合治疗的个体化和新策略研究》专家组. 肝细胞癌肝切除术后复发预防和治疗中国专家共识(2020版)[J]. 中国实用外科杂志, 2021, 41( 1): 20- 30. DOI: 10.19538/j.cjps.issn1005-2208.2021.01.03. [28] LV C, HE N, YANG JJ, et al. Prediction of 3-year recurrence rate of hepatocellular carcinoma after resection based on contrast-enhanced CT: A single-centre study[J]. Br J Radiol, 2023, 96( 1145): 20220702. DOI: 10.1259/bjr.20220702. [29] LIU F, LIU D, WANG K, et al. Deep learning radiomics based on contrast-enhanced ultrasound might optimize curative treatments for very-early or early-stage hepatocellular carcinoma patients[J]. Liver Cancer, 2020, 9( 4): 397- 413. DOI: 10.1159/000505694. [30] WANG F, ZHAN G, CHEN QQ, et al. Multitask deep learning for prediction of microvascular invasion and recurrence-free survival in hepatocellular carcinoma based on MRI images[J]. Liver Int, 2024, 44( 6): 1351- 1362. DOI: 10.1111/liv.15870. [31] LI X, CHEN JM, LIU R, et al. Prediction of the occurrence of microvascular invasion in hepatocellular carcinoma via preoperative prediction model using deep learning on CT image[J]. Chin J Med Imag, 2025, 33( 4): 390- 395. DOI: 10.3969/j.issn.1005-5185.2025.04.009.李鑫, 陈金明, 刘蕊, 等. 基于深度学习CT影像术前预测肝癌患者微血管侵犯[J]. 中国医学影像学杂志, 2025, 33( 4): 390- 395. DOI: 10.3969/j.issn.1005-5185.2025.04.009. [32] HUANG LH, CEN YY, NONG HY, et al. Application progress of new medicine-engineering integration technologies in the diagnosis, treatment and prognosis management of hepatocellular carcinoma[J]. Shandong Med J, 2025, 65( 7): 143- 147. DOI: 10.3969/j.issn.1002-266X.2025.07.030.黄丽洪, 岑永义, 农海洋, 等. 医工结合新技术在肝细胞癌诊治及预后管理中的应用进展[J]. 山东医药, 2025, 65( 7): 143- 147. DOI: 10.3969/j.issn.1002-266X.2025.07.030. [33] WU Y, ZHANG WG. Research progress of artificial intelligence in precision diagnosis and treatment of liver cancer[J]. China J Gen Surg, 2025, 34( 1): 33- 39. DOI: 10.7659/j.issn.1005-6947.240561.吴阳, 张万广. 人工智能在肝癌精准诊疗中的研究进展[J]. 中国普通外科杂志, 2025, 34( 1): 33- 39. DOI: 10.7659/j.issn.1005-6947.240561. [34] FENG LJ, HUANG WY, PAN XY, et al. Predicting overall survival in hepatocellular carcinoma patients via a combined MRI radiomics and pathomics signature[J]. Transl Oncol, 2025, 51: 102174. DOI: 10.1016/j.tranon.2024.102174. [35] WANG GZ, DING FE, CHEN KG, et al. CT-based radiomics nomogram to predict proliferative hepatocellular carcinoma and explore the tumor microenvironment[J]. J Transl Med, 2024, 22( 1): 683. DOI: 10.1186/s12967-024-05393-3. [36] HUANG SY, NONG XL. Applications and Impact of Artificial Intelligence+Telemedicine[C]// China Association of Medical Equipment. Proceedings of the China Medical Equipment Conference and 2024 Medical Equipment Exhibition. 2024: 92- 97. DOI: 10.26914/c.cnkihy.2024.005174.黄苏莹, 农晓琳. 人工智能+远程医疗的应用与影响[C]//中国医学装备协会. 中国医学装备大会暨2024医学装备展览会会议论文汇编. 2024: 92- 97. DOI: 10.26914/c.cnkihy.2024.005174. [37] LIU RR. Application of Intelligent Internet-Based Healthcare in Remote Diagnosis and Treatment Services[C]// Intelligent Information Processing Industrialization Branch of China High-Tech Industrialization Association. Proceedings of the 18th National Conference on Signal and Intelligent Information Processing and Applications. 2024: 670- 674. DOI: 10.26914/c.cnkihy.2024.050459.刘冉冉. 智能化互联网医疗在远程诊疗服务中的应用[C]//中国高科技产业化研究会智能信息处理产业化分会. 第十八届全国信号和智能信息处理与应用学术会议论文集. 2024: 670- 674. DOI: 10.26914/c.cnkihy.2024.050459. [38] ZHANG K, ZHANG ZJ, PENG F, et al. Progress in AI application in telemedicine[J]. China Digit Med, 2024, 19( 1): 68- 75. DOI: 10.3969/j.issn.1673-7571.2024.01.014.张坤, 张震江, 彭芳, 等. 人工智能在远程医疗中的应用进展[J]. 中国数字医学, 2024, 19( 1): 68- 75. DOI: 10.3969/j.issn.1673-7571.2024.01.014. -
本文二维码
计量
- 文章访问数: 5
- HTML全文浏览量: 3
- PDF下载量: 1
- 被引次数: 0

PDF下载 ( 732 KB)
下载:
