中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

肝病数字活检的关键技术与应用前景

周阳 陈振伟 施翰英 林孔英 王英超 曾永毅

引用本文:
Citation:

肝病数字活检的关键技术与应用前景

DOI: 10.12449/JCH251102
基金项目: 

国家自然科学基金面上项目 (62275050);

国家重点研发计划 (2022YFC2407304);

福建省自然科学基金计划项目 (2025J011318);

福州市科技计划项目 (2024-G-015)

利益冲突声明:本文不存在任何利益冲突。
作者贡献声明:曾永毅负责论文的总体构思与统筹;周阳主导研究设计与初稿撰写;陈振伟负责数据整理与图表制作;施翰英、林孔英参与资料收集与文献综述;王英超负责论文修改与语言润色。
详细信息
    通信作者:

    曾永毅, lamp197311@126.com (ORCID: 0000-0001-8823-698X)

Digital biopsy for liver diseases: A review of technological advances and application prospects

Research funding: 

National Natural Science Foundation of China (62275050);

National Key Research and Development Program of China (2022YFC2407304);

Natural Science Foundation of Fujian Province (2025J011318);

Fuzhou Science and Technology Program (2024-G-015)

More Information
    Corresponding author: ZENG Yongyi, lamp197311@126.com (ORCID: 0000-0001-8823-698X)
  • 摘要: 肝病数字活检是人工智能技术与肝病大数据的深度融合,通过智能分析辅助临床决策与全流程管理。本文综述了以标准化数据治理为基础、多模态医学大模型为核心的人工智能技术体系,涵盖自然语言处理、知识图谱、生成式人工智能与大语言模型在专病数据库建设、诊断、预测、治疗及医疗文书生成等方面的应用,并探讨其在医学教育、科研与管理中的前景。尽管该技术展现出广阔的应用潜力,但在多中心数据整合、算法可解释性、伦理与数据安全等方面仍面临挑战。未来应构建闭环优化、人机协同的智能生态,促进其在“医-教-研-管”全链条的深度应用,助力肝病精准防控与全程健康管理。

     

  • 图  1  肝病数字活检技术体系

    Figure  1.  Technical framework of liver disease digital biopsy

    表  1  数据治理环节的关键技术与应用

    Table  1.   Key technologies and applications in data governance

    治理环节 关键技术与应用场景 参考文献
    数据清洗与标准化 NLP负责从原始文本中提取实体和关系;
    知识图谱依托标准词汇体系实现语义整合与知识推理
    5-7
    质量控制与溯源 区块链与分布式账本技术用于数据溯源与审计;
    知识图谱编码医学规则,自动发现逻辑冲突(如用药与诊断不符);
    NLP负责利用数据自身结构学习高质量表示,提升异常检测精度
    8-10
    模型迭代 基础模型通过对海量数据预训练,可持续监控数据质量与算法偏差;
    数字孪生构建虚拟数据环境,用于安全、低成本地仿真和验证治理策略迭代
    11-12
    隐私与安全 联邦学习实现“数据不动模型动”的多中心协同治理;
    GAN生成高质量合成数据,替代敏感原始数据用于开发和测试;
    二者结合能杜绝隐私泄露
    13-15

    注:NLP,自然语言处理;GAN,生成对抗网络。

    下载: 导出CSV

    表  2  AI辅助的临床任务体系中的关键技术与应用

    Table  2.   Key technologies and applications in the AI-assisted clinical task system

    AI辅助的医学任务 关键技术与应用场景 参考文献
    临床辅助决策 计算机视觉聚焦于肝脏影像(CT/MRI)中病灶的自动检测、定位与分类;
    知识图谱提供鉴别诊断支持;
    生成式AI生成初步诊断意见与治疗建议
    29-31
    风险预测与患者管理 卷积神经网络预测肝纤维化进展、肝硬化失代偿、肝细胞癌发生风险,对患者进行动态
    风险分层;
    基于时序建模进行健康风险自动化预警,并利用NLP技术生成个性化的健康管理方案
    32-34
    医疗文书自动化生成 大语言模型、生成式AI与多模态技术可自动整合患者病史与检查结果,并生成包括影
    像诊断报告、门诊病历、病程记录及出院小结在内的医学文书
    35-37
    下载: 导出CSV
  • [1] SCHATTENBERG JM, CHALASANI N, ALKHOURI N. Artificial intelligence applications in hepatology[J]. Clin Gastroenterol Hepatol, 2023, 21( 8): 2015- 2025. DOI: 10.1016/j.cgh.2023.04.007.
    [2] CAZZANIGA G, L'IMPERIO V, BONOLDI E, et al. Automating liver biopsy segmentation with a robust, open-source tool for pathology research: The HOTSPoT model[J]. NPJ Digit Med, 2025, 8( 1): 455. DOI: 10.1038/s41746-025-01870-1.
    [3] WAQAS A, BUI MM, GLASSY EF, et al. Revolutionizing digital pathology with the power of generative artificial intelligence and foundation models[J]. Lab Invest, 2023, 103( 11): 100255. DOI: 10.1016/j.labinv.2023.100255.
    [4] HE R, SARWAL V, QIU XR, et al. Generative AI models in time-varying biomedical data: Scoping review[J]. J Med Internet Res, 2025, 27: e59792. DOI: 10.2196/59792.
    [5] BOSMA JS, DERCKSEN K, BUILTJES L, et al. The DRAGON benchmark for clinical NLP[J]. NPJ Digit Med, 2025, 8: 289. DOI: 10.1038/s41746-025-01626-x.
    [6] FEI H, REN YF, ZHANG Y, et al. Enriching contextualized language model from knowledge graph for biomedical information extraction[J]. Brief Bioinform, 2021, 22( 3): bbaa110. DOI: 10.1093/bib/bbaa110.
    [7] KALYAN KS, SANGEETHA S. BertMCN: Mapping colloquial phrases to standard medical concepts using BERT and highway network[J]. Artif Intell Med, 2021, 112: 102008. DOI: 10.1016/j.artmed.2021.102008.
    [8] OZONZE O, SCOTT PJ, HOPGOOD AA. Automating electronic health record data quality assessment[J]. J Med Syst, 2023, 47( 1): 23. DOI: 10.1007/s10916-022-01892-2.
    [9] SCOTT HF, BRILLI RJ, PAUL R, et al. Evaluating pediatric sepsis definitions designed for electronic health record extraction and multicenter quality improvement[J]. Crit Care Med, 2020, 48( 10): e916- e926. DOI: 10.1097/CCM.0000000000004505.
    [10] RISKIN DJ, MONDA KL, GAGNE JJ, et al. Implementing accuracy, completeness, and traceability for data reliability[J]. JAMA Netw Open, 2025, 8( 3): e250128. DOI: 10.1001/jamanetworkopen.2025.0128.
    [11] RIZZO M. AI in neurology: Everything, everywhere, all at once part 3: Surveillance, synthesis, simulation, and systems[J]. Ann Neurol, 2025, 98( 4): 651- 667. DOI: 10.1002/ana.27230.
    [12] STETSON PD, CHOY J, SUMMERVILLE N, et al. Responsible artificial intelligence governance in oncology[J]. NPJ Digit Med, 2025, 8( 1): 407. DOI: 10.1038/s41746-025-01794-w.
    [13] KOUTSOUBIS N, WAQAS A, YILMAZ Y, et al. Privacy-preserving federated learning and uncertainty quantification in medical imaging[J]. Radiol Artif Intell, 2025, 7( 4): e240637. DOI: 10.1148/ryai.240637.
    [14] LIU JH, CHEN C, QU YY, et al. RASS: Enabling privacy-preserving and authentication in online AI-driven healthcare applications[J]. ISA Trans, 2023, 141: 20- 29. DOI: 10.1016/j.isatra.2023.03.049.
    [15] LI J, CAIRNS BJ, LI JS, et al. Generating synthetic mixed-type longitudinal electronic health records for artificial intelligent applications[J]. NPJ Digit Med, 2023, 6( 1): 98. DOI: 10.1038/s41746-023-00834-7.
    [16] ISGUT M, GLOSTER L, CHOI K, et al. Systematic review of advanced AI methods for improving healthcare data quality in post COVID-19 era[J]. IEEE Rev Biomed Eng, 2023, 16: 53- 69. DOI: 10.1109/RBME.2022.3216531.
    [17] ANAYA G, PETTEE GABRIEL K, ST-ONGE MP, et al. Optimal instruments for measurement of dietary intake, physical activity, and sleep among adults in population-based studies: Report of a national heart, lung, and blood institute workshop[J]. J Am Heart Assoc, 2024, 13( 21): e035818. DOI: 10.1161/JAHA.124.035818.
    [18] BRADSHAW TJ, BROSCH-LENZ J, URIBE C, et al. Recommendations for standardizing nuclear medicine terminology and data in the era of theranostics and artificial intelligence[J]. J Nucl Med, 2025, 66( 9): 1471- 1479. DOI: 10.2967/jnumed.124.269424.
    [19] COSTELLO J, KAUR M, REFORMAT MZ, et al. Leveraging knowledge graphs and natural language processing for automated web resource labeling and knowledge mobilization in neurodevelopmental disorders: Development and usability study[J]. J Med Internet Res, 2023, 25: e45268. DOI: 10.2196/45268.
    [20] SHI J, BENDIG D, VOLLMAR HC, et al. Mapping the bibliometrics landscape of AI in medicine: Methodological study[J]. J Med Internet Res, 2023, 25: e45815. DOI: 10.2196/45815.
    [21] EDFELDT K, EDWARDS AM, ENGKVIST O, et al. A data science roadmap for open science organizations engaged in early-stage drug discovery[J]. Nat Commun, 2024, 15( 1): 5640. DOI: 10.1038/s41467-024-49777-x.
    [22] XI JN, SUN DH, CHANG C, et al. An omics-to-omics joint knowledge association subtensor model for radiogenomics cross-modal modules from genomics and ultrasonic images of breast cancers[J]. Comput Biol Med, 2023, 155: 106672. DOI: 10.1016/j.compbiomed.2023.106672.
    [23] AN D, LIM M, LEE S. Challenges for data quality in the clinical data life cycle: Systematic review[J]. J Med Internet Res, 2025, 27: e60709. DOI: 10.2196/60709.
    [24] GIEREND K, FREIESLEBEN S, KADIOGLU D, et al. The status of data management practices across German medical data integration centers: Mixed methods study[J]. J Med Internet Res, 2023, 25: e48809. DOI: 10.2196/48809.
    [25] LIGHTERNESS A, ADCOCK M, SCANLON LA, et al. Data quality-driven improvement in health care: Systematic literature review[J]. J Med Internet Res, 2024, 26: e57615. DOI: 10.2196/57615.
    [26] SYED R, EDEN R, MAKASI T, et al. Digital health data quality issues: Systematic review[J]. J Med Internet Res, 2023, 25: e42615. DOI: 10.2196/42615.
    [27] HE YT, HUANG FX, JIANG XR, et al. Foundation model for advancing healthcare: Challenges, opportunities and future directions[J]. IEEE Rev Biomed Eng, 2025, 18: 172- 191. DOI: 10.1109/RBME.2024.3496744.
    [28] SCHWABE D, BECKER K, SEYFERTH M, et al. The METRIC-framework for assessing data quality for trustworthy AI in medicine: A systematic review[J]. NPJ Digit Med, 2024, 7( 1): 203. DOI: 10.1038/s41746-024-01196-4.
    [29] TIWARI P, ZHU HY, PANDEY HM. DAPath: Distance-aware knowledge graph reasoning based on deep reinforcement learning[J]. Neural Netw, 2021, 135: 1- 12. DOI: 10.1016/j.neunet.2020.11.012.
    [30] PENG CY, XIA F, NASERIPARSA M, et al. Knowledge graphs: Opportunities and challenges[J]. Artif Intell Rev, 2023, 56( 11): 13071- 13102. DOI: 10.1007/s10462-023-10465-9.
    [31] BHUYAN SS, SATEESH V, MUKUL N, et al. Generative artificial intelligence use in healthcare: Opportunities for clinical excellence and administrative efficiency[J]. J Med Syst, 2025, 49( 1): 10. DOI: 10.1007/s10916-024-02136-1.
    [32] HE JZ, TIBO A, JANET JP, et al. Evaluation of reinforcement learning in transformer-based molecular design[J]. J Cheminform, 2024, 16( 1): 95. DOI: 10.1186/s13321-024-00887-0.
    [33] ATANCE SR, DIEZ JV, ENGKVIST O, et al. De novo drug design using reinforcement learning with graph-based deep generative models[J]. J Chem Inf Model, 2022, 62( 20): 4863- 4872. DOI: 10.1021/acs.jcim.2c00838.
    [34] PARK J, AHN J, CHOI J, et al. Mol-AIR: Molecular reinforcement learning with adaptive intrinsic rewards for goal-directed molecular generation[J]. J Chem Inf Model, 2025, 65( 5): 2283- 2296. DOI: 10.1021/acs.jcim.4c01669.
    [35] YIM WW, FU YJ, ABACHA A BEN, et al. Aci-bench: A novel ambient clinical intelligence dataset for benchmarking automatic visit note generation[J]. Sci Data, 2023, 10: 586. DOI: 10.1038/s41597-023-02487-3.
    [36] KERNBERG A, GOLD JA, MOHAN V. Using ChatGPT-4 to create structured medical notes from audio recordings of physician-patient encounters: Comparative study[J]. J Med Internet Res, 2024, 26: e54419. DOI: 10.2196/54419.
    [37] RAO VM, HLA M, MOOR M, et al. Multimodal generative AI for medical image interpretation[J]. Nature, 2025, 639( 8056): 888- 896. DOI: 10.1038/s41586-025-08675-y.
    [38] DINANI AM, KOWDLEY KV, NOUREDDIN M. Application of artificial intelligence for diagnosis and risk stratification in NAFLD and NASH: The state of the art[J]. Hepatology, 2021, 74( 4): 2233- 2240. DOI: 10.1002/hep.31869.
    [39] AHN JC, RATTAN P, STARLINGER P, et al. AI-Cirrhosis-ECG(ACE) score for predicting decompensation and liver outcomes[J]. JHEP Rep, 2025, 7( 5): 101356. DOI: 10.1016/j.jhepr.2025.101356.
    [40] SU GL, ZHANG P, BELANCOURT PX, et al. Incorporation of quantitative imaging data using artificial intelligence improves risk prediction in veterans with liver disease[J]. Hepatology, 2024, 80( 4): 928- 936. DOI: 10.1097/HEP.0000000000000750.
    [41] ZHAI YP, HAI DR, ZENG L, et al. Artificial intelligence-based evaluation of prognosis in cirrhosis[J]. J Transl Med, 2024, 22( 1): 933. DOI: 10.1186/s12967-024-05726-2.
    [42] SPANN A, STRAUSS AT, DAVIS SE, et al. The role of artificial intelligence in chronic liver diseases and liver transplantation[J]. Gastroenterology, 2025, 169( 3): 456- 470. DOI: 10.1053/j.gastro.2025.05.012.
    [43] FUJIWARA N, FOBAR AJ, RAMAN I, et al. A blood-based prognostic liver secretome signature predicts long-term risk of hepatic decompensation in cirrhosis[J]. Clin Gastroenterol Hepatol, 2022, 20( 5): e1188- e1191. DOI: 10.1016/j.cgh.2021.03.019.
    [44] BEDDIAR DR, OUSSALAH M, SEPPÄNEN T. Automatic captioning for medical imaging(MIC): A rapid review of literature[J]. Artif Intell Rev, 2023, 56( 5): 4019- 4076. DOI: 10.1007/s10462-022-10270-w.
    [45] FINK A, RAU A, REISERT M, et al. Retrieval-augmented generation with large language models in radiology: From theory to practice[J]. Radiol Artif Intell, 2025, 7( 4): e240790. DOI: 10.1148/ryai.240790.
    [46] BELLINI V, RUSSO M, DOMENICHETTI T, et al. Artificial intelligence in operating room management[J]. J Med Syst, 2024, 48( 1): 19. DOI: 10.1007/s10916-024-02038-2.
    [47] XU ZJ, WANG X, ZENG SS, et al. Applying artificial intelligence for cancer immunotherapy[J]. Acta Pharm Sin B, 2021, 11( 11): 3393- 3405. DOI: 10.1016/j.apsb.2021.02.007.
    [48] MUKHERJEE J, SHARMA R, DUTTA P, et al. Artificial intelligence in healthcare: A mastery[J]. Biotechnol Genet Eng Rev, 2024, 40( 3): 1659- 1708. DOI: 10.1080/02648725.2023.2196476.
    [49] MOROSKY CM, BAECHER-LIND L, CHEN KT, et al. Practical applications of artificial intelligence chatbots in obstetrics and gynecology medical education[J]. Am J Obstet Gynecol, 2025, 233( 1): 4- 11. DOI: 10.1016/j.ajog.2025.04.021.
    [50] KARARGYRIS A, UMETON R, SHELLER MJ, et al. Federated benchmarking of medical artificial intelligence with MedPerf[J]. Nat Mach Intell, 2023, 5( 7): 799- 810. DOI: 10.1038/s42256-023-00652-2.
  • 加载中
图(1) / 表(2)
计量
  • 文章访问数:  2
  • HTML全文浏览量:  2
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-09-01
  • 录用日期:  2025-10-18
  • 出版日期:  2025-11-25
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回