SH2B1 rs7359397基因多态性对北京地区年龄≥65岁代谢功能障碍相关脂肪性肝病患者肝纤维化的影响
DOI: 10.12449/JCH251114
Influence of SH2B1rs7359397 polymorphism on hepatic fibrosis in patients with metabolic dysfunction-associated steatotic liver disease aged ≥65 years in Beijing, China
-
摘要:
目的 探讨SH2B1 rs7359397 (C>T)基因多态性与北京地区老年人群代谢功能障碍相关脂肪性肝病(MASLD)患者肝纤维化进展的关系,为我国老年MASLD患者的精准分型、预后评估及个体化治疗提供重要的遗传学依据。 方法 纳入2020年11月—2021年9月在北京京煤集团总医院门矿医院参与定期体检且经腹部超声检查诊断为MASLD的老年患者(年龄≥65岁)为MASLD组(n=505),对照组为在同一时期、同一社区参与体检,且经腹部超声检查未发现脂肪肝的老年人群(n=381)。使用FibroScan检测肝脏脂肪含量和肝纤维化分期。采用96孔微流控芯片技术检测SH2B1 rs7359397基因多态性。符合正态分布的计量资料两组间比较采用成组t检验,计数资料两组间比较采用χ²检验或校正χ²检验。采用单因素和多因素Logistic回归分析确定MASLD及其相关合并症的独立预测因素。 结果 与对照组相比,MASLD组患者年龄更小,腰围、臀围、腰臀比、BMI、ALT、AST、TG和PLT均较高,HDL-C水平较低(P值均<0.05)。对照组381例研究对象中CC型264例(69.29%),CT+TT型117例(30.71%);MASLD组505例患者中CC型317例(62.77%),CT+TT型188例(37.23%)。MASLD组的CT+TT基因型占比显著高于对照组(χ²=4.09,P=0.043)。在MASLD患者中,与基因型CC组相比,CT+TT组FIB-4≥2的比例和动脉粥样硬化性心血管疾病的占比更低(P值均<0.05);进一步多因素Logistic回归分析结果显示,校正年龄、性别和BMI后,携带T等位基因是进展期肝纤维化的保护因素(OR=0.481,95%CI:0.249~0.929,P=0.029)。在合并高血压、代谢综合征及肥胖亚组中,CT+TT基因型与进展期肝纤维化风险显著降低相关联(高血压:OR=0.27,95%CI: 0.09~0.77,P=0.014;代谢综合征:OR=0.30,95%CI:0.11~0.79,P=0.015;肥胖:OR=0.11, 95%CI:0.03~0.48,P=0.003)。校正年龄、性别和BMI后,MASLD患者中,CT+TT基因型比CC基因型患者动脉粥样硬化性心血管疾病患病率显著降低(OR=0.506,95%CI:0.336~0.761,P=0.001)。 结论 SH2B1 rs7359397(C>T)基因多态性与MASLD患者的肝纤维化和动脉粥样硬化性心血管疾病风险降低有关。 -
关键词:
- 代谢功能障碍相关脂肪性肝病 /
- 肝纤维化 /
- 疾病遗传易感性 /
- 心血管疾病
Abstract:Objective To investigate the association of SH2B1 rs7359397 (C>T) polymorphism with the progression to hepatic fibrosis in the elderly patients with metabolic dysfunction-associated steatotic liver disease (MASLD) in Beijing, China, and to provide an important genetic basis for the precise subtyping, prognostic evaluation, and individualized treatment of elderly MASLD patients in China. Methods A total of 505 elderly patients (aged ≥65 years) who participated in regular physical examination in Mentougou Kuangshan Hospital of Beijing Jingmei Group General Hospital from November 2020 to September 2021 and were diagnosed with MASLD by abdominal ultrasound were enrolled as MASLD group, and 381 elderly population who underwent physical examination in the same community hospital during the same period of time and were not found to have MASLD by abdominal ultrasound were enrolled as control group. FibroScan was used to measure liver fat content and determine fibrosis stage. The 96-well microfluidic chip technique was used to identify SH2B1 rs7359397 polymorphism. The independent-samples t test was used for comparison of normally distributed continuous data between the two groups, and the chi-square test or the adjusted chi-square test was used for comparison of categorical data between the two groups. Univariate and multivariate Logistic regression analyses were used to identify the independent predictive factors for MASLD and its comorbidities. Results Compared with the control group, the MASLD group had a significantly younger age and significantly higher levels of waist circumference, hip circumference, waist-hip ratio, body mass index (BMI), alanine aminotransferase, aspartate aminotransferase, triglyceride, platelet count, and fibrosis-4 (FIB-4) index, as well as a significantly lower level of high-density lipoprotein cholesterol (all P<0.05). Among the 381 patients in the control group, 264 (69.29%) had genotype CC and 117 (30.71%) had genotype CT+TT, while among the 505 patients in the MASLD group, 317 (62.77%) had genotype CC and 188 (37.23%) had genotype CT+TT, suggesting that the MASLD group had a significantly higher proportion of patients with genotype CT+TT compared with the control group (χ2=4.09, P=0.043). In the MASLD group, compared with the genotype CC group, the genotype CT+TT group had a significantly lower proportion of patients with FIB-4 ≥2 or atherosclerotic cardiovascular diseases (P<0.05). The multivariate Logistic regression analysis showed that after adjustment for age, sex, and BMI, carrying T allele was a protective factor against progressive hepatic fibrosis (odds ratio [OR]=0.481, 95% confidence interval [CI]: 0.249 — 0.929, P=0.029). In the subgroups of comorbidities with hypertension, metabolic syndrome, and obesity, genotype CT+TT was associated with a significant reduction in the risk of progressive hepatic fibrosis (hypertension: OR=0.27, 95%CI:0.09 — 0.77, P=0.014; metabolic syndrome: OR=0.30, 95%CI: 0.11 — 0.79, P=0.015; obesity: OR=0.11, 95%CI: 0.03 — 0.48, P=0.003). After adjustment for age, sex, and BMI, in the patients with MASLD, the patients with genotype CT+TT had a significant reduction in the prevalence rate of atherosclerotic cardiovascular diseases compared with those with genotype CC (OR=0.506, 95%CI:0.336 — 0.761, P=0.001). Conclusion SH2B1 rs7359397 (C>T) polymorphism is associated with the reduction in the risk of hepatic fibrosis and atherosclerotic cardiovascular diseases in MASLD patients. -
表 1 MASLD组和对照组患者基本资料
Table 1. Basic characteristics of patients in the MASLD group and the control group
项目 总计(n=886) 对照组(n=381) MASLD组(n=505) 统计值 P值 年龄(岁) 70.31±4.97 70.92±5.10 69.85±4.83 t=3.19 0.001 男[例(%)] 245(27.65) 126(33.07) 119(23.56) χ²=9.81 0.002 高血压[例(%)] 681(76.86) 280(73.49) 401(79.41) χ²=4.27 0.039 ASCVD[例(%)] 302(34.09) 131(34.38) 171(33.86) χ²=0.03 0.081 T2DM[例(%)] 370(41.76) 142(37.27) 228(45.15) χ²=5.54 0.019 代谢综合征[例(%)] 761(85.89) 293(76.90) 468(92.67) χ²=44.57 <0.001 肥胖[例(%)] 503(56.90) 242(63.85) 261(51.68) χ²=13.07 <0.001 身高(cm) 159.41±7.66 159.80±7.72 159.11±7.61 t=1.32 0.186 体质量(kg) 65.23±10.21 65.57±8.85 67.99±10.30 t=-9.97 <0.001 BMI(kg/m2) 25.62±3.16 24.06±2.62 26.79±3.03 t=-14.33 <0.001 腰围(cm) 88.22±8.25 84.82±7.57 90.78±7.81 t=-11.38 <0.001 臀围(cm) 98.07±7.23 95.46±6.62 100.04±7.05 t=-9.83 <0.001 腰臀比 0.90±0.05 0.89±0.05 0.91±0.05 t=-5.77 <0.001 ALT(U/L) 20.30±9.85 18.06±8.31 21.98±10.56 t=-6.19 <0.001 AST(U/L) 18.69±7.95 17.51±6.01 19.58±9.04 t=-4.09 <0.001 TG(mmol/L) 1.63±1.10 1.35±0.81 1.84±1.23 t=-7.08 <0.001 TC(mmol/L) 4.85±1.24 4.80±1.15 4.90±1.30 t=-1.18 0.237 HDL-C(mmol/L) 1.15±0.25 1.21±0.28 1.11±0.22 t=5.21 <0.001 LDL-C(mmol/L) 3.37±1.13 3.32±1.04 3.41±1.19 t=-1.21 0.228 降脂药物治疗[例(%)] 314(35.44) 141(37.01) 173(34.26) χ²=0.72 0.397 TBil(mmol/L) 15.56±6.89 15.23±5.56 15.80±7.74 t=-1.23 0.220 空腹血糖(mmol/L) 7.14±3.30 6.96±4.10 7.28±2.53 t=-1.42 0.155 PLT(×109/L) 226.54±57.12 216.05±53.32 234.45±58.65 t=-4.87 <0.001 FIB-4(分) 1.42±0.76 1.52±0.93 1.35±0.60 t=3.35 <0.001 基因分型[例(%)] χ²=4.09 0.043 CC 581(65.58) 264(69.29) 317(62.77) CT+TT 305(34.42) 117(30.71) 188(37.23) 注:TC, 总胆固醇;LDL-C,低密度脂蛋白胆固醇;TBil,总胆红素。
表 2 MASLD人群中CC组和CT/TT组基线资料比较
Table 2. Comparison of baseline characteristics between CC and CT/TT genotype groups in the MASLD population
项目 MASLD组总计(n=505) CC组(n=317) CT+TT组(n=188) 统计值 P值 年龄(岁) 69.85±4.83 70.03±4.85 69.53±4.79 t=1.13 0.259 男[例(%)] 119(23.56) 78(24.61) 41(21.81) χ²=0.51 0.474 高血压[例(%)] 401(79.41) 252(79.50) 149(79.26) χ²=0.00 0.949 ASCVD[例(%)] 171(33.86) 121(38.17) 50(26.60) χ²=7.06 0.008 T2DM[例(%)] 228(45.15) 139(43.85) 89(47.34) χ²=0.58 0.446 代谢综合征[例(%)] 468(92.67) 293(92.43) 175(93.09) χ²=0.07 0.784 肥胖[例(%)] 261(51.68) 169(53.31) 92(48.94) χ²=0.91 0.341 ALT(U/L) 21.98±10.56 21.53±10.25 22.76±11.04 t=-1.26 0.207 AST(U/L) 19.58±9.04 19.62±9.24 19.51±8.73 t=0.14 0.886 TBil(mmol/L) 15.80±7.74 16.18±8.94 15.17±5.09 t=1.61 0.107 TG(mmol/L) 1.84±1.23 1.89±1.28 1.75±1.14 t=1.16 0.245 TC(mmol/L) 4.90±1.30 4.97±1.37 4.78±1.18 t=1.61 0.107 HDL-C(mmol/L) 1.11±0.22 1.11±0.22 1.13±0.23 t=-0.94 0.350 LDL-C(mmol/L) 3.41±1.19 3.49±1.26 3.29±1.05 t=1.75 0.081 降脂药物治疗[例(%)] 173(34.26) 110(34.70) 63(33.51) χ²=0.07 0.785 空腹血糖 7.28±2.53 7.26±2.59 7.30±2.43 t=-0.19 0.851 CAP(dB/m) 296.10±40.77 296.00±43.11 296.27±36.62 t=-0.07 0.941 LSM(kPa) 5.48±2.01 5.49±1.99 5.45±2.06 t=0.26 0.795 PLT(×109/L) 234.45±58.65 232.43±59.24 237.86±57.64 t=-1.01 0.315 FIB-4(分) 1.35±0.60 1.39±0.62 1.29±0.56 t=1.81 0.071 FIB-4≥2分[例(%)] 45(8.91) 35(11.04) 10(5.32) χ²=5.56 0.018 表 3 MASLD患者中SH2B1
rs7359397与进展期肝纤维化的关系 Table 3. Analyzing the association of SH2B1 rs7359397 with liver fibrosis in MASLD
基因型 模型1 模型2 OR(95%CI) P值 OR(95%CI) P值 显性模型 CC 1.000 1.000 CT+TT 0.461(0.241~0.880) 0.019 0.481(0.249~0.929) 0.029 隐性模型 CC+CT 1.000 1.000 TT 0.642(0.148~2.793) 0.555 1.096(0.145~2.864) 0.563 加性模型 CC 1.000 1.000 CT 0.452(0.277~0.901) 0.024 0.474(0.235~0.955) 0.037 TT 0.517(0.118~2.265) 0.381 0.527(0.118~2.362) 0.402 注:模型1未校正混杂因素;模型2校正年龄、性别和BMI。
表 4 SH2B1 rs7359397基因多态性在不同亚组MASLD患者中对进展期肝纤维化的影响
Table 4. Effect of SH2B1 rs7359397 polymorphism on advanced liver fibrosis in different subgroups of MASLD patients
分组 例数 FIB-4<2分/CC(例) FIB-4≥2分/CT+TT(例) OR(95%CI) P值 高血压 否 104 7/65 3/39 0.90(0.07~12.21) 0.936 是 401 37/252 10/149 0.27(0.09~0.77) 0.014 ASCVD 否 334 22/196 8/138 0.53(0.17~1.70) 0.286 是 171 22/121 5/50 0.34(0.05~2.30) 0.269 T2DM 否 277 29/178 7/99 0.27(0.07~1.01) 0.051 是 228 15/139 6/89 0.69(0.17~2.85) 0.612 代谢综合征 否1) 37 4/24 1/13 是 468 40/293 12/175 0.30(0.11~0.79) 0.015 肥胖 否 244 17/148 5/96 0.57(0.04~7.71) 0.671 是 261 27/169 8/92 0.11(0.03~0.48) 0.003 注:以SH2B1 rs7359397 CC基因型为参照。1)数据过小,未进行统计分析。
表 5 SH2B1
rs7359397基因多态性与MASLD合并症风险分析 Table 5. Association analysis of SH2B1 rs7359397 polymorphism with risk of MASLD complications
合并症 MASLD患者(n=505) 全部人群(n=886) OR(95%CI) P值 OR(95%CI) P值 T2DM CC 1.000 1.000 CT+TT 1.050(0.724~1.522) 0.797 1.178(0.888~1.562) 0.255 ASCVD CC 1.000 1.000 CT+TT 0.506(0.336~0.761) 0.001 0.753(0.558~1.017) 0.064 高血压 CC 1.000 1.000 CT+TT 0.938(0.591~1.489) 0.786 0.971(0.694~1.358) 0.863 肥胖 CC 1.000 1.000 CT+TT 0.839(0.578~1.219) 0.357 0.864(0.652~1.144) 0.307 代谢综合征 CC 1.000 1.000 CT+TT 1.007(0.473~2.143) 0.985 1.003(0.642~1.566) 0.990 -
[1] European Association for the Study of the Liver(EASL); European Association for the Study of Diabetes(EASD); European Association for the Study of Obesity(EASO). EASL-EASD-EASO clinical practice guidelines on the management of metabolic dysfunction-associated steatotic liver disease(MASLD)[J]. J Hepatol, 2024, 81( 3): 492- 542. DOI: 10.1016/j.jhep.2024.04.031. [2] GBD 2017 Cirrhosis Collaborators. The global, regional, and national burden of cirrhosis by cause in 195 countries and territories, 1990-2017: A systematic analysis for the Global Burden of Disease Study 2017[J]. Lancet Gastroenterol Hepatol, 2020, 5( 3): 245- 266. DOI: 10.1016/S2468-1253(19)30349-8. [3] YOUNOSSI ZM, GOLABI P, PAIK JM, et al. The global epidemiology of nonalcoholic fatty liver disease(NAFLD) and nonalcoholic steatohepatitis(NASH): A systematic review[J]. Hepatology, 2023, 77( 4): 1335- 1347. DOI: 10.1097/HEP.0000000000000004. [4] LI M, XIE W. Are there all-cause mortality differences between metabolic dysfunction-associated steatotic liver disease subtypes?[J]. J Hepatol, 2024, 80( 2): e53- e54. DOI: 10.1016/j.jhep.2023.07.012. [5] QUEK J, CHAN KE, WONG ZY, et al. Global prevalence of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in the overweight and obese population: A systematic review and meta-analysis[J]. Lancet Gastroenterol Hepatol, 2023, 8( 1): 20- 30. DOI: 10.1016/S2468-1253(22)00317-X. [6] MAHFOOD HADDAD T, HAMDEH S, KANMANTHAREDDY A, et al. Nonalcoholic fatty liver disease and the risk of clinical cardiovascular events: A systematic review and meta-analysis[J]. Diabetes Metab Syndr, 2017, 11( Suppl 1): S209- S216. DOI: 10.1016/j.dsx.2016.12.033. [7] VALENTI LVC, BASELLI GA. Genetics of nonalcoholic fatty liver disease: A 2018 update[J]. Curr Pharm Des, 2018, 24( 38): 4566- 4573. DOI: 10.2174/1381612825666190119113836. [8] ROMEO S, KOZLITINA J, XING C, et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease[J]. Nat Genet, 2008, 40( 12): 1461- 1465. DOI: 10.1038/ng.257. [9] LI XY, LIU Z, LI L, et al. TM6SF2 rs58542926 is related to hepatic steatosis, fibrosis and serum lipids both in adults and children: A meta-analysis[J]. Front Endocrinol(Lausanne), 2022, 13: 1026901. DOI: 10.3389/fendo.2022.1026901. [10] CHERUBINI A, CASIRATI E, TOMASI M, et al. PNPLA3 as a therapeutic target for fatty liver disease: The evidence to date[J]. Expert Opin Ther Targets, 2021, 25( 12): 1033- 1043. DOI: 10.1080/14728222.2021.2018418. [11] ABUL-HUSN NS, CHENG XP, LI AH, et al. A protein-truncating HSD17B13 variant and protection from chronic liver disease[J]. N Engl J Med, 2018, 378( 12): 1096- 1106. DOI: 10.1056/NEJMoa1712191. [12] MERONI M, LONGO M, FRACANZANI AL, et al. MBOAT7 down-regulation by genetic and environmental factors predisposes to MAFLD[J]. EBioMedicine, 2020, 57: 102866. DOI: 10.1016/j.ebiom.2020.102866. [13] JAMSHIDI Y, SNIEDER H, GE DL, et al. The SH2B gene is associated with serum leptin and body fat in normal female twins[J]. Obesity(Silver Spring), 2007, 15( 1): 5- 9. DOI: 10.1038/oby.2007.637. [14] PEREZ-DIAZ-DEL-CAMPO N, ABETE I, CANTERO I, et al. Association of the SH2B1 rs7359397 gene polymorphism with steatosis severity in subjects with obesity and non-alcoholic fatty liver disease[J]. Nutrients, 2020, 12( 5): 1260. DOI: 10.3390/nu12051260. [15] PEREZ-DIAZ-DEL-CAMPO N, MARIN-ALEJANDRE BA, CANTERO I, et al. Differential response to a 6-month energy-restricted treatment depending on SH2B1 rs7359397 variant in NAFLD subjects: Fatty Liver in Obesity(FLiO) Study[J]. Eur J Nutr, 2021, 60( 6): 3043- 3057. DOI: 10.1007/s00394-020-02476-x. [16] HINNEY A, KÖRNER A, FISCHER-POSOVSZKY P. The promise of new anti-obesity therapies arising from knowledge of genetic obesity traits[J]. Nat Rev Endocrinol, 2022, 18( 10): 623- 637. DOI: 10.1038/s41574-022-00716-0. [17] LOOMBA R, ABDELMALEK MF, ARMSTRONG MJ, et al. Semaglutide 2·4 Mg once weekly in patients with non-alcoholic steatohepatitis-related cirrhosis: A randomised, placebo-controlled phase 2 trial[J]. Lancet Gastroenterol Hepatol, 2023, 8( 6): 511- 522. DOI: 10.1016/S2468-1253(23)00068-7. [18] PETIT JM, VERGÈS B. GLP-1 receptor agonists in NAFLD[J]. Diabetes Metab, 2017, 43( Suppl 1): 2S28- 2 S 33. DOI: 10.1016/S1262-3636(17)30070-8. [19] IWASAKI S, HAMADA T, CHISAKI I, et al. Mechanism-based pharmacokinetic/pharmacodynamic modeling of the glucagon-like peptide-1 receptor agonist exenatide to characterize its antiobesity effects in diet-induced obese mice[J]. J Pharmacol Exp Ther, 2017, 362( 3): 441- 449. DOI: 10.1124/jpet.117.242651. [20] MORRIS DL, CHO KW, RUI LY. Critical role of the Src homology 2(SH2) domain of neuronal SH2B1 in the regulation of body weight and glucose homeostasis in mice[J]. Endocrinology, 2010, 151( 8): 3643- 3651. DOI: 10.1210/en.2010-0254. [21] ONI ET, AGATSTON AS, BLAHA MJ, et al. A systematic review: Burden and severity of subclinical cardiovascular disease among those with nonalcoholic fatty liver; should we care?[J]. Atherosclerosis, 2013, 230( 2): 258- 267. DOI: 10.1016/j.atherosclerosis.2013.07.052. -
本文二维码
计量
- 文章访问数: 6
- HTML全文浏览量: 2
- PDF下载量: 3
- 被引次数: 0

PDF下载 ( 686 KB)
下载: 