中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

达格列净对代谢相关脂肪性肝病小鼠模型肠道菌群的影响及其机制分析

郑彩云 俞丽丽 田晓旭 戴亨纷

引用本文:
Citation:

达格列净对代谢相关脂肪性肝病小鼠模型肠道菌群的影响及其机制分析

DOI: 10.12449/JCH251116
基金项目: 

福建省自然科学基金 (2025J011339);

福州市卫生健康科技计划 (2022-S-wq1);

福建医科大学启航基金 (2020QH1346)

伦理学声明:本研究方案于2024年8月18日经福建医科大学实验动物伦理委员会审批,批号:IACUCFJMU 2024-Y-2092,符合实验动物管理与使用准则。
利益冲突声明:本文不存在任何利益冲突。
作者贡献声明:郑彩云负责设计课题和论文框架,起草论文;郑彩云和俞丽丽负责实验操作,研究过程的实施;俞丽丽和田晓旭负责数据收集,统计学分析;郑彩云和戴亨纷负责论文修改和绘制图表;戴亨纷负责拟定写作思路,指导撰写文章并最后定稿。
详细信息
    通信作者:

    戴亨纷, hengfendai2011@163.com (ORCID: 0000-0002-2037-4208)

Effect and mechanism of dapagliflozin on gut microbiota in a mouse model of metabolic associated fatty liver disease

Research funding: 

Natural Science Foundation of Fujian Province (2025J011339);

Fuzhou Health Science and Technology Project (2022-S-wq1);

Startup Fund of Scientific Research, Fujian Medical University (2020QH1346)

More Information
  • 摘要:   目的  探讨达格列净对代谢相关脂肪性肝病(MAFLD)小鼠肝脂代谢及肠道微生态的影响,并阐明其潜在作用机制。  方法  50只C57雄性小鼠随机分为正常组(Control组)、2型糖尿病合并代谢相关脂肪性肝病组(MAFLD组)、达格列净组(DAPA组)、米屈肼组(THP组)、达格列净联合米屈肼组(DAPA+THP组),每组各10只。采用高脂饮食联合链脲佐菌素诱导MAFLD小鼠模型。通过组织病理学、血糖血脂等生化指标评估疗效,并利用转录组学和宏基因组学分析差异基因及菌群变化。正态分布的计量资料多组间比较采用单因素方差分析,两两比较采用LSD检验;非正态分布的计量资料多组间比较采用Kruskal-Wallis H检验,两两比较采用Nemenyi检验。  结果  组织病理学结果显示,MAFLD组小鼠表现为过量的脂质沉积,肝细胞出现脂肪样变;与MAFLD组相比,DAPA组肝细胞脂肪样变显著改善,THP组、DAPA+THP组改善效果无DAPA组明显。与Control组相比,MAFLD组空腹血糖显著升高(P<0.05),血清ALT、AST、MDA、TC、TG、LDL-C均显著升高(P值均<0.05),HDL-C明显降低(P<0.05)。与MAFLD组相比,DAPA组、THP组和DAPA+THP组血清ALT、AST显著降低(P值均<0.05)。16S rRNA测序显示,MAFLD组较Control组,小鼠肠道菌群发生显著改变,MAFLD组的FirmicutesLactobacillaceae明显增加,BacteroidetesS24-7Erysipelotrichaceae明显减少。DAPA组、THP组和DAPA+THP组可调节上述菌群趋向正常水平。肝脏转录组学分析主要富集的代谢通路包括类固醇激素生物合成、胆汁分泌、炎性介质调节TRP(瞬时受体电位通道)、脂肪酸延伸、脂质生物代谢过程等,关联的基因主要涉及脂质代谢关键靶点Acot2、Angptl4、Scd2和Npc1l1。  结论  DAPA可能通过类固醇激素生物合成、胆汁分泌、炎性介质调节TRP、脂肪酸延伸通路改善MAFLD,调节肠道菌群稳态。

     

  • 注: a,各组小鼠空腹血糖动态变化;b,链脲佐菌素注射前糖耐量实验;c,链脲佐菌素注射后糖耐量实验。

    图  1  小鼠血糖的变化

    Figure  1.  Changes of blood glucose of mice

    图  2  小鼠肝组织HE染色及油红O染色结果(×100)

    Figure  2.  Staining results of HE and oil red O in liver tissues of mice(×100)

    注: a,OTU数;b,各水平微生物分类单元数统计图。

    图  3  小鼠肠道菌群生物信息学分析

    Figure  3.  Bioinformatics analysis of the intestinal flora in mice

    注: a,稀疏曲线;b,Alpha多样性指数(与其他组比较,*P<0.05,**P<0.01,***P<0.001);c,PCoA分析二维排序图;d,NMDS二维排序图。

    图  4  小鼠肠道菌群多样性分析

    Figure  4.  Analysis of the diversity of intestinal flora in mice

    注: a, 排名前20菌群门类;b,排名前20菌群纲类;c,排名前20菌群科类;d,排名前20菌群种类;e,各组物种组成热图;f,差异菌群。

    图  5  小鼠肠道菌群的组成成分及差异分析

    Figure  5.  Analysis of the components and differences of the intestinal microbiota in mice

    注: a,每个比较组的基因表达量差异;b,热图;c,DAPA vs MAFLD;d,THP vs MAFLD。

    图  6  小鼠mRNA表达量差异分析

    Figure  6.  Analysis of differences in mRNA expression levels in mice

    注: a,MAFLD组 vs Control组;b,DAPA组 vs MAFLD组;★P<0.05;★★P<0.01;★★★P<0.001。

    图  7  小鼠肠道差异菌群与肝脏转录因子表达关联性分析

    Figure  7.  Correlation analysis of intestinal differential microbiota and liver transcription factor expression in mice

    表  1  小鼠生化指标情况

    Table  1.   Biochemical indicators of mice

    指标 Control组 MAFLD组 DAPA组 THP组 DAPA+THP组 H P
    ALT(U/L) 85.34
    (84.43~85.48)
    87.33
    (86.66~87.81)1)
    85.04
    (84.81~85.40)2)
    85.01
    (84.02~85.72)2)
    82.56
    (81.60~83.59)1)2)
    24.15 <0.001
    AST(U/L) 16.02
    (15.90~16.15)
    17.21
    (16.97~17.35)1)
    16.21
    (15.64~16.43)2)
    16.09
    (15.84~16.43)1)2)
    15.93
    (15.66~16.23)2)
    20.81 0.001
    GSH(μmol/L) 65.63
    (48.96~112.15)
    10.42
    (8.33~50.69)
    54.34
    (53.91~75.17)
    85.42
    (59.20~107.12)
    53.13
    (50.95~55.99)
    9.37 0.053
    MDA(nmol/mL) 29.39
    (18.91~44.65)
    261.28
    (244.65~325.51)1)
    41.12
    (30.52~53.25)2)
    318.91
    (299.37~353.25)1)
    26.99
    (15.49~30.64)
    23.53 <0.001
    SOD(U/mL) 19.88
    (19.13~21.85)
    18.62
    (14.31~21.42)
    22.06
    (20.65~23.82)2)
    19.48
    (18.91~20.38)
    25.14
    (23.73~26.42)1)2)
    19.35 0.001
    TC(mmol/L) 6.89
    (6.63~7.19)
    8.81
    (8.28~10.06)1)
    7.27
    (6.59~7.63)2)
    9.82
    (9.50~10.19)2)
    7.05
    (6.70~8.46)2)
    20.37 0.001
    TG(mmol/L) 0.96
    (0.89~0.97)
    1.56
    (1.49~1.63)1)
    1.07
    (0.90~1.14)2)
    1.04
    (0.75~1.18)1)
    0.77
    (0.73~0.78)2)
    18.16 0.001
    HDL-C(mmol/L) 3.37
    (3.14~3.44)
    2.38
    (2.21~2.59) 1)
    3.00
    (2.81~3.03)
    2.84
    (2.53~3.49)
    2.52
    (2.45~3.09)
    14.43 0.006
    LDL-C(mmol/L) 4.62
    (4.47~4.99)
    7.59
    (7.11~8.27)1)
    4.89
    (4.64~5.14)
    4.62
    (4.53~4.72)
    6.19
    (6.00~6.45)
    22.79 0.000 1

    注:与Control组比较,1)P<0.05;与MAFLD组比较,2)P<0.05。

    下载: 导出CSV
  • [1] YOUNOSSI ZM, LOOMBA R, RINELLA ME, et al. Current and future therapeutic regimens for nonalcoholic fatty liver disease and nonalcoholic steatohepatitis[J]. Hepatology, 2018, 68( 1): 361- 371. DOI: 10.1002/hep.29724.
    [2] YOUNOSSI Z, TACKE F, ARRESE M, et al. Global perspectives on nonalcoholic fatty liver disease and nonalcoholic steatohepatitis[J]. Hepatology, 2019, 69( 6): 2672- 2682. DOI: 10.1002/hep.30251.
    [3] YABIKU K, MUTOH A, MIYAGI K, et al. Effects of oral antidiabetic drugs on changes in the liver-to-spleen ratio on computed tomography and inflammatory biomarkers in patients with type 2 diabetes and nonalcoholic fatty liver disease[J]. Clin Ther, 2017, 39( 3): 558- 566. DOI: 10.1016/j.clinthera.2017.01.015.
    [4] DONG YJ, LV QG, LI SY, et al. Efficacy and safety of glucagon-like peptide-1 receptor agonists in non-alcoholic fatty liver disease: A systematic review and meta-analysis[J]. Clin Res Hepatol Gastroenterol, 2017, 41( 3): 284- 295. DOI: 10.1016/j.clinre.2016.11.009.
    [5] NEWSOME PN, BUCHHOLTZ K, CUSI K, et al. A placebo-controlled trial of subcutaneous semaglutide in nonalcoholic steatohepatitis[J]. N Engl J Med, 2021, 384( 12): 1113- 1124. DOI: 10.1056/NEJMoa2028395.
    [6] RAJ H, DURGIA H, PALUI R, et al. SGLT-2 inhibitors in non-alcoholic fatty liver disease patients with type 2 diabetes mellitus: A systematic review[J]. World J Diabetes, 2019, 10( 2): 114- 132. DOI: 10.4239/wjd.v10.i2.114.
    [7] FERRANNINI E, RAMOS SJ, SALSALI A, et al. Dapagliflozin monotherapy in type 2 diabetic patients with inadequate glycemic control by diet and exercise: A randomized, double-blind, placebo-controlled, phase 3 trial[J]. Diabetes Care, 2010, 33( 10): 2217- 2224. DOI: 10.2337/dc10-0612.
    [8] DHILLON S. Dapagliflozin: A review in type 2 diabetes[J]. Drugs, 2019, 79( 10): 1135- 1146. DOI: 10.1007/s40265-019-01148-3.
    [9] BAYS HE, SARTIPY P, XU J, et al. Dapagliflozin in patients with type II diabetes mellitus, with and without elevated triglyceride and reduced high-density lipoprotein cholesterol levels[J]. J Clin Lipidol, 2017, 11( 2): 450- 458. e 1. DOI: 10.1016/j.jacl.2017.01.018.
    [10] SUIJK DLS, VAN BAAR MJB, VAN BOMMEL EJM, et al. SGLT2 inhibition and uric acid excretion in patients with type 2 diabetes and normal kidney function[J]. Clin J Am Soc Nephrol, 2022, 17( 5): 663- 671. DOI: 10.2215/CJN.11480821.
    [11] JAIKUMKAO K, PONGCHAIDECHA A, CHUEAKULA N, et al. Dapagliflozin, a sodium-glucose co-transporter-2 inhibitor, slows the progression of renal complications through the suppression of renal inflammation, endoplasmic reticulum stress and apoptosis in prediabetic rats[J]. Diabetes Obes Metab, 2018, 20( 11): 2617- 2626. DOI: 10.1111/dom.13441.
    [12] WIVIOTT SD, RAZ I, BONACA MP, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes[J]. N Engl J Med, 2019, 380( 4): 347- 357. DOI: 10.1056/NEJMoa1812389.
    [13] LIEPINSH E, KUKA J, SVALBE B, et al. Effects of long-term mildronate treatment on cardiac and liver functions in rats[J]. Basic Clin Pharmacol Toxicol, 2009, 105( 6): 387- 394. DOI: 10.1111/j.1742-7843.2009.00461.x.
    [14] HMELNICKIS J, PUGOVICS O, KAZOKA H, et al. Application of hydrophilic interaction chromatography for simultaneous separation of six impurities of mildronate substance[J]. J Pharm Biomed Anal, 2008, 48( 3): 649- 656. DOI: 10.1016/j.jpba.2008.06.011.
    [15] DE NICOLA L, GABBAI FB, GAROFALO C, et al. Nephroprotection by SGLT2 inhibition: Back to the future?[J]. J Clin Med, 2020, 9( 7): 2243. DOI: 10.3390/jcm9072243.
    [16] XU L, NAGATA N, NAGASHIMADA M, et al. SGLT2 inhibition by empagliflozin promotes fat utilization and browning and attenuates inflammation and insulin resistance by polarizing M2 macrophages in diet-induced obese mice[J]. EBioMedicine, 2017, 20: 137- 149. DOI: 10.1016/j.ebiom.2017.05.028.
    [17] KUSMINSKI CM, MCTERNAN PG, SCHRAW T, et al. Adiponectin complexes in human cerebrospinal fluid: Distinct complex distribution from serum[J]. Diabetologia, 2007, 50( 3): 634- 642. DOI: 10.1007/s00125-006-0577-9.
    [18] TAHARA A, TAKASU T. Therapeutic effects of SGLT2 inhibitor ipragliflozin and metformin on NASH in type 2 diabetic mice[J]. Endocr Res, 2020, 45( 2): 147- 161. DOI: 10.1080/07435800.2020.1713802.
    [19] WANG JX, RAHIMNEJAD S, ZHANG YY, et al. Mildronate triggers growth suppression and lipid accumulation in largemouth bass(Micropterus salmoides) through disturbing lipid metabolism[J]. Fish Physiol Biochem, 2022, 48( 1): 145- 159. DOI: 10.1007/s10695-021-01040-6.
    [20] BOURSIER J, MUELLER O, BARRET M, et al. The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota[J]. Hepatology, 2016, 63( 3): 764- 775. DOI: 10.1002/hep.28356.
    [21] LIU RX, HONG J, XU XQ, et al. Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention[J]. Nat Med, 2017, 23( 7): 859- 868. DOI: 10.1038/nm.4358.
    [22] HSU CL, SCHNABL B. The gut-liver axis and gut microbiota in health and liver disease[J]. Nat Rev Microbiol, 2023, 21( 11): 719- 733. DOI: 10.1038/s41579-023-00904-3.
    [23] CANFORA EE, JOCKEN JW, BLAAK EE. Short-chain fatty acids in control of body weight and insulin sensitivity[J]. Nat Rev Endocrinol, 2015, 11( 10): 577- 591. DOI: 10.1038/nrendo.2015.128.
    [24] SYLVERS-DAVIE KL, DAVIES BSJ. Regulation of lipoprotein metabolism by ANGPTL3, ANGPTL4, and ANGPTL8[J]. Am J Physiol Endocrinol Metab, 2021, 321( 4): E493- E508. DOI: 10.1152/ajpendo.00195.2021.
    [25] WANG BH, JIANG XY, CAO M, et al. Altered fecal microbiota correlates with liver biochemistry in nonobese patients with non-alcoholic fatty liver disease[J]. Sci Rep, 2016, 6: 32002. DOI: 10.1038/srep32002.
    [26] HUNT MC, TILLANDER V, ALEXSON SEH. Regulation of peroxisomal lipid metabolism: The role of acyl-CoA and coenzyme A metabolizing enzymes[J]. Biochimie, 2014, 98: 45- 55. DOI: 10.1016/j.biochi.2013.12.018.
    [27] MA S, SHI S, XU BH, et al. Host serine protease ACOT2 assists DENV proliferation by hydrolyzing viral polyproteins[J]. mSystems, 2024, 9( 1): e00973-23. DOI: 10.1128/msystems.00973-23.
    [28] ALTMANN SW, DAVIS HR Jr, ZHU LJ, et al. Niemann-Pick C1 Like 1 protein is critical for intestinal cholesterol absorption[J]. Science, 2004, 303( 5661): 1201- 1204. DOI: 10.1126/science.1093131.
    [29] SHEN F, ZHENG RD, SUN XQ, et al. Gut microbiota dysbiosis in patients with non-alcoholic fatty liver disease[J]. Hepatobiliary Pancreat Dis Int, 2017, 16( 4): 375- 381. DOI: 10.1016/S1499-3872(17)60019-5.
    [30] GUTIÉRREZ-JUÁREZ R, POCAI A, MULAS C, et al. Critical role of stearoyl-CoA desaturase-1(SCD1) in the onset of diet-induced hepatic insulin resistance[J]. J Clin Invest, 2006, 116( 6): 1686- 1695. DOI: 10.1172/JCI26991.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  4
  • HTML全文浏览量:  4
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-06-16
  • 录用日期:  2025-09-05
  • 出版日期:  2025-11-25
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回