中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

肝纤维化中糖脂代谢重编程研究进展: 靶向肝巨噬细胞与肝星状细胞

杨希坤 李晖 王凯鑫 吴旋

引用本文:
Citation:

肝纤维化中糖脂代谢重编程研究进展: 靶向肝巨噬细胞与肝星状细胞

DOI: 10.12449/JCH251127
基金项目: 

国家自然科学基金面上项目 (82274323);

四川省科技厅重点研发项目 (2024YFFK0150)

利益冲突声明:本文不存在任何利益冲突。
作者贡献声明:杨希坤负责撰写论文;王凯鑫、吴旋参与查找文献,修改论文;李晖负责拟定写作思路,指导论文撰写并最后定稿。
详细信息
    通信作者:

    李晖, 1400124746@qq.com (ORCID: 0000-0002-5919-1396)

Research advances in the reprogramming of glucose and lipid metabolism in liver fibrosis: Targeting hepatic macrophages and hepatic stellate cells

Research funding: 

General Program of the National Natural Science Foundational of China (82274323);

Key R&D Project of Sichuan Provincial Science and Technology Department (2024YFFK0150)

More Information
    Corresponding author: LI Hui, 1400124746@qq.com (ORCID: 0000-0002-5919-1396)
  • 摘要: 肝纤维化的发生过程复杂,随着对其研究的深入,越来越多的证据表明,在肝纤维化的发生发展过程中存在大量的代谢重编程。本文主要对肝巨噬细胞的来源及相关作用、肝星状细胞的分布以及二者在肝纤维化发生过程中的糖酵解和脂质代谢变化进行综述,以期为肝纤维化的研究和防治提供新的见解。

     

  • 图  1  巨噬细胞与HSC调控肝纤维化糖脂代谢重编程的机制

    Figure  1.  Mechanism diagram of macrophage and hepatic stellate cell regulation of glycometabolic reprogramming in liver fibrosis

  • [1] HAMMERICH L, TACKE F. Hepatic inflammatory responses in liver fibrosis[J]. Nat Rev Gastroenterol Hepatol, 2023, 20( 10): 633- 646. DOI: 10.1038/s41575-023-00807-x.
    [2] WEN YK, LAMBRECHT J, JU C, et al. Hepatic macrophages in liver homeostasis and diseases-diversity, plasticity and therapeutic opportunities[J]. Cell Mol Immunol, 2021, 18( 1): 45- 56. DOI: 10.1038/s41423-020-00558-8.
    [3] PAPACHRISTOFOROU E, RAMACHANDRAN P. Macrophages as key regulators of liver health and disease[J]. Int Rev Cell Mol Biol, 2022, 368: 143- 212. DOI: 10.1016/bs.ircmb.2022.04.006.
    [4] CHEN YN, HU MR, WANG L, et al. Macrophage M1/M2 polarization[J]. Eur J Pharmacol, 2020, 877: 173090. DOI: 10.1016/j.ejphar.2020.173090.
    [5] SIERRO F, EVRARD M, RIZZETTO S, et al. A liver capsular network of monocyte-derived macrophages restricts hepatic dissemination of intraperitoneal bacteria by neutrophil recruitment[J]. Immunity, 2017, 47( 2): 374- 388. e 6. DOI: 10.1016/j.immuni.2017.07.018.
    [6] GUILLIAMS M, BONNARDEL J, HAEST B, et al. Spatial proteogenomics reveals distinct and evolutionarily conserved hepatic macrophage niches[J]. Cell, 2022, 185( 2): 379- 396. e 38. DOI: 10.1016/j.cell.2021.12.018.
    [7] WANG Z, DU KL, JIN NK, et al. Macrophage in liver fibrosis: Identities and mechanisms[J]. Int Immunopharmacol, 2023, 120: 110357. DOI: 10.1016/j.intimp.2023.110357.
    [8] JAITIN DA, ADLUNG L, THAISS CA, et al. Lipid-associated macrophages control metabolic homeostasis in a Trem2-dependent manner[J]. Cell, 2019, 178( 3): 686- 698. e 14. DOI: 10.1016/j.cell.2019.05.054.
    [9] DECZKOWSKA A, WEINER A, AMIT I. The physiology, pathology, and potential therapeutic applications of the TREM2 signaling pathway[J]. Cell, 2020, 181( 6): 1207- 1217. DOI: 10.1016/j.cell.2020.05.003.
    [10] GANGULY S, ROSENTHAL SB, ISHIZUKA K, et al. Lipid-associated macrophages’ promotion of fibrosis resolution during MASH regression requires TREM2[J]. Proc Natl Acad Sci USA, 2024, 121( 35): e2405746121. DOI: 10.1073/pnas.2405746121.
    [11] WANG XC, HE QF, ZHOU CL, et al. Prolonged hypernutrition impairs TREM2-dependent efferocytosis to license chronic liver inflammation and NASH development[J]. Immunity, 2023, 56( 1): 58- 77. e 11. DOI: 10.1016/j.immuni.2022.11.013.
    [12] WEI XL, WU DQ, LI J, et al. Myeloid beta-arrestin 2 depletion attenuates metabolic dysfunction-associated steatohepatitis via the metabolic reprogramming of macrophages[J]. Cell Metab, 2024, 36( 10): 2281- 2297. e 7. DOI: 10.1016/j.cmet.2024.08.010.
    [13] HU SW, LI R, GONG DX, et al. Atf3-mediated metabolic reprogramming in hepatic macrophage orchestrates metabolic dysfunction-associated steatohepatitis[J]. Sci Adv, 2024, 10( 30): eado3141. DOI: 10.1126/sciadv.ado3141.
    [14] XU J, JIN WL, LI X. A new perspective in the treatment of liver fibrosis: Targeting macrophage metabolism[J]. J Clin Hepatol, 2023, 39( 4): 922- 928. DOI: 10.3969/j.issn.1001-5256.2023.04.027.

    许钧, 金卫林, 李汛. 肝纤维化治疗的新视角: 靶向巨噬细胞代谢[J]. 临床肝胆病杂志, 2023, 39( 4): 922- 928. DOI: 10.3969/j.issn.1001-5256.2023.04.027.
    [15] KORNBERG MD. The immunologic Warburg effect: Evidence and therapeutic opportunities in autoimmunity[J]. Wiley Interdiscip Rev Syst Biol Med, 2020, 12( 5): e1486. DOI: 10.1002/wsbm.1486.
    [16] INOMATA Y, OH JW, TANIGUCHI K, et al. Downregulation of miR-122-5p activates glycolysis via PKM2 in kupffer cells of rat and mouse models of non-alcoholic steatohepatitis[J]. Int J Mol Sci, 2022, 23( 9): 5230. DOI: 10.3390/ijms23095230.
    [17] MORENO-FERNANDEZ ME, GILES DA, OATES JR, et al. PKM2-dependent metabolic skewing of hepatic Th17 cells regulates pathogenesis of non-alcoholic fatty liver disease[J]. Cell Metab, 2021, 33( 6): 1187- 1204. e 9. DOI: 10.1016/j.cmet.2021.04.018.
    [18] PALSSON-MCDERMOTT EM, CURTIS AM, GOEL G, et al. Pyruvate kinase M2 regulates Hif-1α activity and IL-1β induction and is a critical determinant of the Warburg effect in LPS-activated macrophages[J]. Cell Metab, 2015, 21( 1): 65- 80. DOI: 10.1016/j.cmet.2014.12.005.
    [19] RAO JH, WANG H, NI M, et al. FSTL1 promotes liver fibrosis by reprogramming macrophage function through modulating the intracellular function of PKM2[J]. Gut, 2022, 71( 12): 2539- 2550. DOI: 10.1136/gutjnl-2021-325150.
    [20] FAN N, ZHANG XY, ZHAO W, et al. Covalent inhibition of pyruvate kinase M2 reprograms metabolic and inflammatory pathways in hepatic macrophages against non-alcoholic fatty liver disease[J]. Int J Biol Sci, 2022, 18( 14): 5260- 5275. DOI: 10.7150/ijbs.73890.
    [21] SCHILPEROORT M, NGAI D, KATERELOS M, et al. PFKFB2-mediated glycolysis promotes lactate-driven continual efferocytosis by macrophages[J]. Nat Metab, 2023, 5( 3): 431- 444. DOI: 10.1038/s42255-023-00736-8.
    [22] KHOMICH O, IVANOV AV, BARTOSCH B. Metabolic hallmarks of hepatic stellate cells in liver fibrosis[J]. Cells, 2019, 9( 1): 24. DOI: 10.3390/cells9010024.
    [23] TRIVEDI P, WANG S, FRIEDMAN SL. The power of plasticity-metabolic regulation of hepatic stellate cells[J]. Cell Metab, 2021, 33( 2): 242- 257. DOI: 10.1016/j.cmet.2020.10.026.
    [24] HORN P, TACKE F. Metabolic reprogramming in liver fibrosis[J]. Cell Metab, 2024, 36( 7): 1439- 1455. DOI: 10.1016/j.cmet.2024.05.003.
    [25] YANG T, ZHAO DL, ZHOU YY, et al. Glucose, lipid and protein metabolism of hepatic stellate cells: A novel target against liver fibrosis[J]. Chin Pharmacol Bull, 2021, 37( 7): 902- 905. DOI: 10.3969/j.issn.1001-1978.2021.07.004.

    杨婷, 赵丹雳, 周媛媛, 等. 肝星状细胞糖脂蛋白质代谢: 抗肝纤维化的新靶标[J]. 中国药理学通报, 2021, 37( 7): 902- 905. DOI: 10.3969/j.issn.1001-1978.2021.07.004.
    [26] SHMARAKOV IO, JIANG HF, LIU J, et al. Hepatic stellate cell activation: A source for bioactive lipids[J]. Biochim Biophys Acta Mol Cell Biol Lipids, 2019, 1864( 5): 629- 642. DOI: 10.1016/j.bbalip.2019.02.004.
    [27] LAI KKY, KWEON SM, CHI F, et al. Stearoyl-CoA desaturase promotes liver fibrosis and tumor development in mice via a Wnt positive-signaling loop by stabilization of low-density lipoprotein-receptor-related proteins 5 and 6[J]. Gastroenterology, 2017, 152( 6): 1477- 1491. DOI: 10.1053/j.gastro.2017.01.021.
    [28] FONDEVILA MF, FERNANDEZ U, HERAS V, et al. Inhibition of carnitine palmitoyltransferase 1A in hepatic stellate cells protects against fibrosis[J]. J Hepatol, 2022, 77( 1): 15- 28. DOI: 10.1016/j.jhep.2022.02.003.
    [29] LUQUERO A, VILAHUR G, CASANI L, et al. Differential cholesterol uptake in liver cells: A role for PCSK9[J]. FASEB J, 2022, 36( 5): e22291. DOI: 10.1096/fj.202101660RR.
    [30] WANG FX, CHEN L, KONG DS, et al. Canonical Wnt signaling promotes HSC glycolysis and liver fibrosis through an LDH-A/HIF-1α transcriptional complex[J]. Hepatology, 2024, 79( 3): 606- 623. DOI: 10.1097/HEP.0000000000000569.
    [31] CHEN YP, CHOI SS, MICHELOTTI GA, et al. Hedgehog controls hepatic stellate cell fate by regulating metabolism[J]. Gastroenterology, 2012, 143( 5): 1319- 1329. e 11. DOI: 10.1053/j.gastro.2012.07.115.
    [32] MEJIAS M, GALLEGO J, NARANJO-SUAREZ S, et al. CPEB4 increases expression of PFKFB3 to induce glycolysis and activate mouse and human hepatic stellate cells, promoting liver fibrosis[J]. Gastroenterology, 2020, 159( 1): 273- 288. DOI: 10.1053/j.gastro.2020.03.008.
    [33] WANG FX, JIA Y, LI MM, et al. Blockade of glycolysis-dependent contraction by oroxylin a via inhibition of lactate dehydrogenase-a in hepatic stellate cells[J]. Cell Commun Signal, 2019, 17( 1): 11. DOI: 10.1186/s12964-019-0324-8.
    [34] QU HD, LIU JL, ZHANG D, et al. Glycolysis in chronic liver diseases: Mechanistic insights and therapeutic opportunities[J]. Cells, 2023, 12( 15): 1930. DOI: 10.3390/cells12151930.
    [35] ZHENG DD, JIANG YC, QU C, et al. Pyruvate kinase M2 tetramerization protects against hepatic stellate cell activation and liver fibrosis[J]. Am J Pathol, 2020, 190( 11): 2267- 2281. DOI: 10.1016/j.ajpath.2020.08.002.
    [36] RHO H, TERRY AR, CHRONIS C, et al. Hexokinase 2-mediated gene expression via histone lactylation is required for hepatic stellate cell activation and liver fibrosis[J]. Cell Metab, 2023, 35( 8): 1406- 1423.e8. DOI: 10.1016/j.cmet.2023.06.013.
  • 加载中
图(1)
计量
  • 文章访问数:  4
  • HTML全文浏览量:  1
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-06
  • 录用日期:  2025-06-26
  • 出版日期:  2025-11-25
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回