中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

乙型肝炎动物模型的研究现状与挑战

徐在超 夏宇尘

引用本文:
Citation:

乙型肝炎动物模型的研究现状与挑战

DOI: 10.12449/JCH260105
基金项目: 

新发突发与重大传染病防控国家科技重大专项 (2025ZD01906700);

中央高校基本科研业务费 (2042024kf0026);

国家自然科学基金 (32570193);

国家自然科学基金 (81971936);

国家自然科学基金 (32300131);

中国博士后科学基金 (2023M732695)

利益冲突声明:本文不存在任何利益冲突。
作者贡献声明:徐在超负责查阅和归纳文献并撰写论文;夏宇尘负责指导撰写并修改论文。
详细信息
    通信作者:

    夏宇尘,yuchenxia@whu.edu.cn (ORCID: 0000-0001-8460-3893)

Current research status and challenges of animal models for hepatitis B

Research funding: 

National Science and Technology Major Project for the Prevention and Control of Emerging and Major Infectious Diseases (2025ZD01906700);

Fundamental Research Funds for the Central Universities (2042024kf0026);

National Natural Science Foundation of China (32570193);

National Natural Science Foundation of China (81971936);

National Natural Science Foundation of China (32300131);

China Postdoctoral Science Foundation (2023M732695)

More Information
  • 摘要: 乙型肝炎病毒(HBV)感染是全球面临的主要健康问题之一,是导致肝硬化和肝细胞癌的重要病因之一。由于HBV感染具有严格的种属特异性,目前尚未建立能够支持完整HBV感染周期并真实模拟宿主免疫和发病机制的动物模型。现有用于HBV研究的动物模型包括黑猩猩、树鼩和小鼠等多种宿主,以及利用相关嗜肝病毒建立的替代模型。尽管这些模型在研究HBV复制、免疫反应及抗病毒药物评估方面发挥了重要作用,但仍存在伦理、感染效率低、成本高或缺乏持续感染等局限。近年来,人源化肝脏与免疫系统的小鼠模型、转基因模型及病毒载体介导的感染模型等新策略的出现,显著推动了HBV生物学研究进展。未来,通过结合基因编辑、组织工程及多系统整合等新技术,构建更符合人类病理生理特征的HBV感染动物模型,将为深入理解病毒-宿主互作机制、探索HBV清除途径及开发根治性治疗策略提供坚实基础。

     

  • 注: HBV生活周期包括病毒吸附、进入、脱衣壳、向细胞核的运输、cccDNA形成、转录、翻译、组装、分泌和整合。HBV,乙型肝炎病毒;HSPG,硫酸乙酰肝素蛋白聚糖;NTCP,钠离子-牛磺胆酸共转运多肽;HBeAg,乙型肝炎e抗原;MVB,多囊泡体;HBx,HBV X蛋白;HBsAg,乙型肝炎表面抗原;pgRNA,前基因组RNA;cccDNA,共价闭合环状DNA;dslDNA,双链线性DNA。

    图  1  HBV生活周期

    Figure  1.  HBV life cycle

    表  1  不同物种肝细胞对HBV感染与复制的支持能力

    Table  1.   Ability of hepatocytes from different species to support HBV infection and replication

    物种 HBV进入 cccDNA形成及病毒
    复制
    参考文献
    + + 311-13
    黑猩猩 + + 14-17
    树鼩 + + 313
    土拨鼠 + - 13
    猕猴 - + 31318
    食蟹猴 - + 311-12
    + + 13
    +/- - 12-13
    山羊 +/- - 12-13
    + + 12-13
    + - 12-1319
    仓鼠 - + 12-1320
    豚鼠 - - 12
    - + 11-1219
    + - 11-12
    大鼠 + - 11
    小鼠 - - 10-1121

    注:“+”表示有;“-”表示无;“+/-”表示现有数据存在冲突。HBV,乙型肝炎病毒;cccDNA,共价闭合环状DNA。

    下载: 导出CSV

    表  2  HBV小鼠模型

    Table  2.   HBV mice model

    小鼠模型 载体/病毒
    类型
    病毒
    进入
    感染性 病毒
    复制
    病毒持
    久性
    cccDNA 病毒颗
    粒分泌
    免疫系统 优势 局限性
    HBV转基因
    小鼠
    整合HBV
    基因
    - - + + - + 免疫完全 易获取;近交
    系;稳定表达
    HBV基因
    非自然感染;无
    cccDNA形成;无
    病毒清除;免疫
    耐受
    高压水动力
    注射介导的
    HBV转染小鼠
    HBV复制
    型质粒
    - - + + - + 免疫完全 易获取;近交
    系;研究病毒
    清除机制
    非自然感染;瞬
    时载体驱动的复
    制;转染效率低;
    复制时间短
    重组AdV介
    导的HBV
    转导小鼠
    AdV-HBV - - + +/剂量依赖 - + 免疫完全 易获取;近交
    系;稳定复制
    非自然感染;无
    cccDNA形成;剂
    量依赖
    重组AVV介
    导的HBV转
    导小鼠
    AAV-HBV - - + +/剂量和品
    系依赖
    + + 免疫完全 易获取;近交
    系;稳定复制;
    支持cccDNA
    形成
    非自然感染;无
    病毒清除;剂量
    和品系依赖;免
    疫耐受
    cccDNA
    替代小鼠
    重组
    cccDNA
    - - + + + + 免疫完全 易获取;近交
    系;稳定复制;
    以cccDNA或
    其替代分子为
    复制模板
    非自然感染
    人-鼠嵌合肝
    脏小鼠
    HBV + + + + + + 免疫缺陷 易获取;近交
    系;HBV易感
    感染过程缓慢;
    造模操作复杂;
    繁殖困难;免疫
    缺陷
    人免疫系统
    和肝双人源
    化小鼠
    HBV + + + + + + 人的免疫
    系统
    易获取;近交
    系;HBV易感
    造模操作复杂;
    繁殖困难;成本
    较高

    注:“+”表示有或包含;“-”表示无或没有。HBV,乙型肝炎病毒;cccDNA,共价闭合环状DNA;AdV,腺病毒;AAV,腺相关病毒。

    下载: 导出CSV
  • [1] SCHWEITZER A, HORN J, MIKOLAJCZYK RT, et al. Estimations of worldwide prevalence of chronic hepatitis B virus infection: A systematic review of data published between 1965 and 2013[J]. Lancet, 2015, 386( 10003): 1546- 1555. DOI: 10.1016/S0140-6736(15)61412-X.
    [2] NASSAL M. HBV cccDNA: Viral persistence reservoir and key obstacle for a cure of chronic hepatitis B[J]. Gut, 2015, 64( 12): 1972- 1984. DOI: 10.1136/gutjnl-2015-309809.
    [3] YAN H, ZHONG GC, XU GW, et al. Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus[J]. eLife, 2012, 1: e00049. DOI: 10.7554/eLife.00049.
    [4] XIA YC, GUO HT. Hepatitis B virus cccDNA: Formation, regulation and therapeutic potential[J]. Antiviral Res, 2020, 180: 104824. DOI: 10.1016/j.antiviral.2020.104824.
    [5] ZHAO KT, WANG JJ, WANG ZC, et al. Hepatitis B virus hijacks MRE11-RAD50-NBS1 complex to form its minichromosome[J]. PLoS Pathog, 2025, 21( 1): e1012824. DOI: 10.1371/journal.ppat.1012824.
    [6] XIA YC, CHENG XM, NILSSON T, et al. Nucleolin binds to and regulates transcription of hepatitis B virus covalently closed circular DNA minichromosome[J]. Proc Natl Acad Sci USA, 2023, 120( 49): e2306390120. DOI: 10.1073/pnas.2306390120.
    [7] TENG Y, XU ZC, ZHAO KT, et al. Novel function of SART1 in HNF4α transcriptional regulation contributes to its antiviral role during HBV infection[J]. J Hepatol, 2021, 75( 5): 1072- 1082. DOI: 10.1016/j.jhep.2021.06.038.
    [8] WANG JJ, HUANG HY, ZHAO KT, et al. G-quadruplex in hepatitis B virus pregenomic RNA promotes its translation[J]. J Biol Chem, 2023, 299( 9): 105151. DOI: 10.1016/j.jbc.2023.105151.
    [9] ZHENG YC, WANG MF, LI ST, et al. Hepatitis B virus hijacks TSG101 to facilitate egress via multiple vesicle bodies[J]. PLoS Pathog, 2023, 19( 5): e1011382. DOI: 10.1371/journal.ppat.1011382.
    [10] ZHAO KT, GUO FT, WANG JJ, et al. Limited disassembly of cytoplasmic hepatitis B virus nucleocapsids restricts viral infection in murine hepatic cells[J]. Hepatology, 2023, 77( 4): 1366- 1381. DOI: 10.1002/hep.32622.
    [11] LEMPP FA, WIEDTKE E, QU BQ, et al. Sodium taurocholate cotransporting polypeptide is the limiting host factor of hepatitis B virus infection in macaque and pig hepatocytes[J]. Hepatology, 2017, 66( 3): 703- 716. DOI: 10.1002/hep.29112.
    [12] XU ZC, ZHAO KT, WANG JJ, et al. Screening of different species reveals cat hepatocytes support HBV infection[J]. PLoS Pathog, 2025, 21( 8): e1013390. DOI: 10.1371/journal.ppat.1013390.
    [13] CHEN FW, WETTENGEL JM, GEGENFURTNER F, et al. Identification of NTCP animal orthologs supporting hepatitis B virus binding and infection[J]. J Virol, 2025, 99( 4): e01833-24. DOI: 10.1128/jvi.01833-24.
    [14] ASABE S, WIELAND SF, CHATTOPADHYAY PK, et al. The size of the viral inoculum contributes to the outcome of hepatitis B virus infection[J]. J Virol, 2009, 83( 19): 9652- 9662. DOI: 10.1128/JVI.00867-09.
    [15] WIELAND SF, SPANGENBERG HC, THIMME R, et al. Expansion and contraction of the hepatitis B virus transcriptional template in infected chimpanzees[J]. Proc Natl Acad Sci USA, 2004, 101( 7): 2129- 2134. DOI: 10.1073/pnas.0308478100.
    [16] GUIDOTTI LG, ROCHFORD R, CHUNG J, et al. Viral clearance without destruction of infected cells during acute HBV infection[J]. Science, 1999, 284( 5415): 825- 829. DOI: 10.1126/science.284.5415.825.
    [17] KOMIYA Y, KATAYAMA K, YUGI H, et al. Minimum infectious dose of hepatitis B virus in chimpanzees and difference in the dynamics of viremia between genotype A and genotype C[J]. Transfusion, 2008, 48( 2): 286- 294. DOI: 10.1111/j.1537-2995.2007.01522.x.
    [18] BURWITZ BJ, WETTENGEL JM, MÜCK-HÄUSL MA, et al. Hepatocytic expression of human sodium-taurocholate cotransporting polypeptide enables hepatitis B virus infection of macaques[J]. Nat Commun, 2017, 8( 1): 2146. DOI: 10.1038/s41467-017-01953-y.
    [19] ZHOU M, QIN B, DENG XS, et al. hNTCP-expressing primary pig hepatocytes are a valuable tool for investigating hepatitis B virus infection and antiviral drugs[J]. Mol Med Rep, 2019, 20( 4): 3820- 3828. DOI: 10.3892/mmr.2019.10628.
    [20] ZHANG H, LIU YN, LIU CD, et al. The feasibility of establishing a Hamster model for HBV infection: In vitro evidence[J]. mBio, 2024, 15( 11): e02615-24. DOI: 10.1128/mbio.02615-24.
    [21] YAN H, PENG B, HE WH, et al. Molecular determinants of hepatitis B and D virus entry restriction in mouse sodium taurocholate cotransporting polypeptide[J]. J Virol, 2013, 87( 14): 7977- 7991. DOI: 10.1128/JVI.03540-12.
    [22] WANG Q, SCHWARZENBERGER P, YANG F, et al. Experimental chronic hepatitis B infection of neonatal tree shrews(Tupaia belangeri Chinensis): A model to study molecular causes for susceptibility and disease progression to chronic hepatitis in humans[J]. Virol J, 2012, 9: 170. DOI: 10.1186/1743-422X-9-170.
    [23] KÖCK J, NASSAL M, MACNELLY S, et al. Efficient infection of primary Tupaia Hepatocytes with purified human and woolly monkey hepatitis B virus[J]. J Virol, 2001, 75( 11): 5084- 5089. DOI: 10.1128/JVI.75.11.5084-5089.2001.
    [24] GHEIT T, SEKKAT S, COVA L, et al. Experimental transfection of Macaca sylvanus with cloned human hepatitis B virus[J]. J Gen Virol, 2002, 83( Pt 7): 1645- 1649. DOI: 10.1099/0022-1317-83-7-1645.
    [25] MÜLLER SF, KÖNIG A, DÖRING B, et al. Characterisation of the hepatitis B virus cross-species transmission pattern via Na+/taurocholate co-transporting polypeptides from 11 New World and Old World primate species[J]. PLoS One, 2018, 13( 6): e0199200. DOI: 10.1371/journal.pone.0199200.
    [26] BISWAS S, RUST LN, WETTENGEL JM, et al. Long-term hepatitis B virus infection of Rhesus macaques requires suppression of host immunity[J]. Nat Commun, 2022, 13( 1): 2995. DOI: 10.1038/s41467-022-30593-0.
    [27] RUST LN, WETTENGEL JM, BISWAS S, et al. Liver-specific transgenic expression of human NTCP in Rhesus macaques confers HBV susceptibility on primary hepatocytes[J]. Proc Natl Acad Sci USA, 2025, 122( 7): e2413771122. DOI: 10.1073/pnas.2413771122.
    [28] HE WH, REN BJ, MAO FF, et al. Hepatitis D virus infection of mice expressing human sodium taurocholate co-transporting polypeptide[J]. PLoS Pathog, 2015, 11( 4): e1004840. DOI: 10.1371/journal.ppat.1004840.
    [29] GUIDOTTI LG, MATZKE B, SCHALLER H, et al. High-level hepatitis B virus replication in transgenic mice[J]. J Virol, 1995, 69( 10): 6158- 6169. DOI: 10.1128/JVI.69.10.6158-6169.1995.
    [30] YANG PL, ALTHAGE A, CHUNG J, et al. Hydrodynamic injection of viral DNA: A mouse model of acute hepatitis B virus infection[J]. Proc Natl Acad Sci USA, 2002, 99( 21): 13825- 13830. DOI: 10.1073/pnas.202398599.
    [31] SPRENGERS D, VAN DER MOLEN RG, KUSTERS JG, et al. Analysis of intrahepatic HBV-specific cytotoxic T-cells during and after acute HBV infection in humans[J]. J Hepatol, 2006, 45( 2): 182- 189. DOI: 10.1016/j.jhep.2005.12.022.
    [32] YANG D, LIU LC, ZHU DM, et al. A mouse model for HBV immunotolerance and immunotherapy[J]. Cell Mol Immunol, 2014, 11( 1): 71- 78. DOI: 10.1038/cmi.2013.43.
    [33] KO C, SU JP, FESTAG J, et al. Intramolecular recombination enables the formation of hepatitis B virus(HBV) cccDNA in mice after HBV genome transfer using recombinant AAV vectors[J]. Antiviral Res, 2021, 194: 105140. DOI: 10.1016/j.antiviral.2021.105140.
    [34] QI ZH, LI GY, HU H, et al. Recombinant covalently closed circular hepatitis B virus DNA induces prolonged viral persistence in immunocompetent mice[J]. J Virol, 2014, 88( 14): 8045- 8056. DOI: 10.1128/JVI.01024-14.
    [35] MA KAY, HE CY, CHEN ZY. A robust system for production of minicircle DNA vectors[J]. Nat Biotechnol, 2010, 28( 12): 1287- 1289. DOI: 10.1038/nbt.1708.
    [36] ZHOU ZM, LI C, TAN ZX, et al. A spatiotemporally controlled recombinant cccDNA mouse model for studying HBV and developing drugs against the virus[J]. Antiviral Res, 2023, 216: 105642. DOI: 10.1016/j.antiviral.2023.105642.
    [37] XU ZC, ZHAO L, ZHONG YQ, et al. A novel mouse model harboring hepatitis B virus covalently closed circular DNA[J]. Cell Mol Gastroenterol Hepatol, 2022, 13( 4): 1001- 1017. DOI: 10.1016/j.jcmgh.2021.11.011.
    [38] BILITY MT, ZHANG LG, WASHBURN ML, et al. Generation of a humanized mouse model with both human immune system and liver cells to model hepatitis C virus infection and liver immunopathogenesis[J]. Nat Protoc, 2012, 7( 9): 1608- 1617. DOI: 10.1038/nprot.2012.083.
    [39] WASHBURN ML, BILITY MT, ZHANG LG, et al. A humanized mouse model to study hepatitis C virus infection, immune response, and liver disease[J]. Gastroenterology, 2011, 140( 4): 1334- 1344. DOI: 10.1053/j.gastro.2011.01.001.
    [40] JESKE SD, WETTENGEL JM, GEGENFURTNER F, et al. Identification of amino acids restricting HBV receptor function in porcine NTCP[J]. NPJ Viruses, 2024, 2: 30. DOI: 10.1038/s44298-024-00041-5.
    [41] DUPINAY T, GHEIT T, ROQUES P, et al. Discovery of naturally occurring transmissible chronic hepatitis B virus infection among Macaca fascicularis from Mauritius Island[J]. Hepatology, 2013, 58( 5): 1610- 1620. DOI: 10.1002/hep.26428.
    [42] LANFORD RE, CHAVEZ D, BRASKY KM, et al. Isolation of a hepadnavirus from the woolly monkey, a New World primate[J]. Proc Natl Acad Sci USA, 1998, 95( 10): 5757- 5761. DOI: 10.1073/pnas.95.10.5757.
    [43] CHEN CY, WINER BY, CHAVEZ D, et al. Woolly monkey-HBV infection in squirrel monkeys as a surrogate nonhuman primate model of HBV infection[J]. Hepatol Commun, 2020, 4( 3): 371- 386. DOI: 10.1002/hep4.1471.
    [44] LIU YZ, CAFIERO TR, PARK D, et al. Targeted viral adaptation generates a Simian-tropic hepatitis B virus that infects marmoset cells[J]. Nat Commun, 2023, 14: 3582. DOI: 10.1038/s41467-023-39148-3.
    [45] de CARVALHO DOMINGUEZ SOUZA BF, KÖNIG A, RASCHE A, et al. A novel hepatitis B virus species discovered in capuchin monkeys sheds new light on the evolution of primate hepadnaviruses[J]. J Hepatol, 2018, 68( 6): 1114- 1122. DOI: 10.1016/j.jhep.2018.01.029.
    [46] SUMMERS J, SMOLEC JM, SNYDER R. A virus similar to human hepatitis B virus associated with hepatitis and hepatoma in woodchucks[J]. Proc Natl Acad Sci USA, 1978, 75( 9): 4533- 4537. DOI: 10.1073/pnas.75.9.4533.
    [47] DANDRI M, BURDA MR, WILL H, et al. Increased hepatocyte turnover and inhibition of woodchuck hepatitis B virus replication by adefovir in vitro do not lead to reduction of the closed circular DNA[J]. Hepatology, 2000, 32( 1): 139- 146. DOI: 10.1053/jhep.2000.8701.
    [48] MENNE S, TUMAS DB, LIU KH, et al. Sustained efficacy and seroconversion with the Toll-like receptor 7 agonist GS-9620 in the Woodchuck model of chronic hepatitis B[J]. J Hepatol, 2015, 62( 6): 1237- 1245. DOI: 10.1016/j.jhep.2014.12.026.
    [49] MASON WS, SEAL G, SUMMERS J. Virus of Pekin ducks with structural and biological relatedness to human hepatitis B virus[J]. J Virol, 1980, 36( 3): 829- 836. DOI: 10.1128/JVI.36.3.829-836.1980.
    [50] GUO WN, ZHU B, AI L, et al. Animal models for the study of hepatitis B virus infection[J]. Zool Res, 2018, 39( 1): 25- 31. DOI: 10.24272/j.issn.2095-8137.2018.013.
    [51] FUNK A, MHAMDI M, WILL H, et al. Avian hepatitis B viruses: Molecular and cellular biology, phylogenesis, and host tropism[J]. World J Gastroenterol, 2007, 13( 1): 91- 103. DOI: 10.3748/wjg.v13.i1.91.
    [52] AGHAZADEH M, SHI M, BARRS VR, et al. A novel hepadnavirus identified in an immunocompromised domestic cat in Australia[J]. Viruses, 2018, 10( 5): 269. DOI: 10.3390/v10050269.
    [53] LANAVE G, CAPOZZA P, DIAKOUDI G, et al. Identification of hepadnavirus in the sera of cats[J]. Sci Rep, 2019, 9( 1): 10668. DOI: 10.1038/s41598-019-47175-8.
    [54] SHOFA M, OHKAWA A, KANEKO Y, et al. Conserved use of the sodium/bile acid cotransporter(NTCP) as an entry receptor by hepatitis B virus and domestic cat hepadnavirus[J]. Antiviral Res, 2023, 217: 105695. DOI: 10.1016/j.antiviral.2023.105695.
    [55] SHOFA M, FUKUSHIMA YV, SAITO A. Conserved yet divergent Smc5/6 complex degradation by mammalian hepatitis B virus X proteins[J]. Int J Mol Sci, 2025, 26( 14): 6786. DOI: 10.3390/ijms26146786.
    [56] CAVASIN JP, CHEN MC, AJOYAN H, et al. Recurrent integration of domestic cat hepatitis B virus DNA near feline CCNE1 supports an oncogenic role in hepatocellular carcinoma in cats[J]. Tumour Virus Res, 2025, 20: 200324. DOI: 10.1016/j.tvr.2025.200324.
  • 加载中
图(1) / 表(2)
计量
  • 文章访问数:  11
  • HTML全文浏览量:  0
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-11-08
  • 录用日期:  2025-12-03
  • 出版日期:  2026-01-25
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回