中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

髓系细胞在肝纤维化中的作用及其机制

崔承杰 赵珍珍 崔静 臧淑娴 付娜

引用本文:
Citation:

髓系细胞在肝纤维化中的作用及其机制

DOI: 10.12449/JCH260123
基金项目: 

河北省自然科学基金精准医学联合基金培育项目 (H2025206096);

政府资助临床医学优秀人才项目 (ZF2024072);

河北省中医药类科学研究课题计划项目 (2025320)

利益冲突声明:本文不存在任何利益冲突。
作者贡献声明:崔承杰负责文献阅读及综述撰写;赵珍珍负责设计论文框架、绘制机制图;崔静、臧淑娴负责绘制机制图;付娜负责拟定写作思路,指导撰写综述并最后定稿。
详细信息
    通信作者:

    付娜, 38200273@hebmu.edu.cn (ORCID: 0009-0006-2071-6307)

Role and mechanism of myeloid cells in hepatic fibrosis

Research funding: 

Cultivation Project of Precision Medicine Joint Fund of Natural Science Foundation of Hebei Province (H2025206096);

Government Funded Project for Outstanding Talents in Clinical Medicine (ZF2024072);

Hebei Province Traditional Chinese Medicine Scientific Research Project Plan (2025320)

More Information
  • 摘要: 肝纤维化是由多种慢性致病因素引起的以肝脏细胞外基质过度沉积、肝脏结构和功能异常为特征的复杂动态过程。若不及时进行抗纤维化治疗,可进展为肝硬化乃至肝癌。肝纤维化的发病机制复杂,既往研究多集中于肝星状细胞活化。而近年研究发现,髓系细胞因具有多向分化的潜能,亦可参与肝纤维化的发生发展。本文系统综述了髓系细胞在肝纤维化中的作用及调控机制,以期为临床诊断及靶向治疗提供科学参考依据。

     

  • 注: MerTK,原癌基因酪氨酸激酶;Erk,外细胞质信号调节激酶;TGF,转化生长因子;PDGF,血小板衍生生长因子;ROS,活性氧;NLRP3,NOD样受体热蛋白结构域相关蛋白3;TNF,肿瘤坏死因子;TLR,Toll样受体;LPS,脂多糖;IL,白细胞介素;LOXL,赖氨酰氧化酶样蛋白;CCL,C-C趋化因子配体;CXCL,C-X-C基序趋化因子配体;HSC,肝星状细胞;ECM,细胞外基质;DC,树突状细胞;IDO1,吲哚胺2,3-双加氧酶1;PI3K,磷脂酰肌醇3激酶;AKT,蛋白激酶B;FoxO1,叉头盒O1;PD-L1,程序性死亡-配体1;PD-1,程序性死亡蛋白受体-1;IFN,干扰素;IL-1Ra,IL-1受体拮抗剂。

    图  1  Kupffer细胞及DC在肝纤维化中的作用机制

    Figure  1.  Mechanism of Kupffer cells and dendritic cells in hepatic fibrosis

    注: MDM,单核细胞来源巨噬细胞;LPS,脂多糖;iNOS,诱导型一氧化氮合酶;NO,一氧化氮;PGE2,前列腺素E2;IFN-γ,干扰素γ;TSP1,血小板反应蛋白1;Erk,外细胞质信号调节激酶;mTOR,雷帕霉素靶蛋白;SYK,脾酪氨酸激酶;HIF1α,缺氧诱导因子1α;PDGF,血小板衍生生长因子;HSC,肝星状细胞;BMDM,骨髓来源巨噬细胞;MMP,基质金属蛋白酶;HGF,肝生长因子;NK细胞,自然杀伤细胞;TRAIL,TNF相关凋亡诱导配体;SMPDL3B;鞘磷脂磷酸二酯酶样3B;IL,白细胞介素;TNF,肿瘤坏死因子;CSF1,集落刺激因子1;CCL,C-C驱化因子配体;CXCL,C-X-C基序驱化因子配体;OSM,抑瘤素M;VEGF,血管内皮生长因子;TGF-β,转化生长因子β;FGF21,成纤维细胞生长因子21;C3ar1,肝脏补体3a受体1;α-SMA,α平滑肌肌动蛋白;collagen Ⅰ,胶原蛋白Ⅰ;GRP78,葡萄糖调节蛋白78;IRE1α,肌醇需求酶1α;PDI,蛋白二硫键异构酶。

    图  2  髓系巨噬细胞在肝纤维化中的作用机制

    Figure  2.  Mechanism of myeloid macrophages in hepatic fibrosis

    注: JNK,c-Jun氨基末端激酶;TGF-β,转化生长因子-β;IL,白细胞介素;MMP,基质金属蛋白酶;PDGF,血小板衍生生长因子;α-SMA,α平滑肌肌动蛋白;PGE2,前列腺素E2;NLRP3,NOD样受体热蛋白结构域相关蛋白3;SMPDL3B,鞘磷脂磷酸二酯酶样3B;TLR:Toll样受体;ROS,活性氧;MPO,髓过氧化物酶;TAZ,具有PDZ结合序列的转录共激活因子;IHH,印度刺猬蛋白;GLI2,GLI锌指2;NET,中性粒细胞外陷阱;Col1A1,Ⅰ型胶原蛋白α1链;COX2,环氧化酶2;MDM,单核细胞来源巨噬细胞;HSC,肝星状细胞;ECM,细胞外基质;GM-CSF,粒细胞-巨噬细胞集落刺激因子;Erk,外细胞质信号调节激酶。

    图  3  中性粒细胞在肝纤维化中的作用机制

    Figure  3.  Mechanism of neutrophils in hepatic fibrosis

    注: MDSC,骨髓源性抑制细胞;PD-L1,程序性死亡受体配体1;NK,自然杀伤细胞;IFN,干扰素;CTLA-4,细胞毒性T淋巴细胞相关蛋白4;TIGIT,T细胞免疫球蛋白及ITIM结构域蛋白;HSC,肝星状细胞。

    图  4  MDSC在肝纤维化中的作用机制

    Figure  4.  Mechanism of myeloid-derived suppressor cells in hepatic fibrosis

  • [1] Liver Disease Committee, Chinese Association of Integrative Medicine. Guidelines for diagnosis and treatment of liver fibrosis with integrated traditional Chinese and western medicine(2019 edition)[J]. J Chin Hepatol, 2019, 35( 7): 1444- 1449. DOI: 10.3969/j.issn.1001-5256.2019.07.007.

    中国中西医结合学会肝病专业委员会. 肝纤维化中西医结合诊疗指南(2019年版)[J]. 临床肝胆病杂志, 2019, 35( 7): 1444- 1449. DOI: 10.3969/j.issn.1001-5256.2019.07.007.
    [2] YAMASHITA M, PASSEGUÉ E. TNF-α coordinates hematopoietic stem cell survival and myeloid regeneration[J]. Cell Stem Cell, 2019, 25( 3): 357- 372. e 7. DOI: 10.1016/j.stem.2019.05.019.
    [3] BOZHILOV YK, HSU I, BROWN EJ, et al. In vitro human haematopoietic stem cell expansion and differentiation[J]. Cells, 2023, 12( 6): 896. DOI: 10.3390/cells12060896.
    [4] PIETRAS EM, MIRANTES-BARBEITO C, FONG S, et al. Chronic interleukin-1 exposure drives haematopoietic stem cells towards precocious myeloid differentiation at the expense of self-renewal[J]. Nat Cell Biol, 2016, 18( 6): 607- 618. DOI: 10.1038/ncb3346.
    [5] MOSSADEGH-KELLER N, SARRAZIN S, KANDALLA PK, et al. M-CSF instructs myeloid lineage fate in single haematopoietic stem cells[J]. Nature, 2013, 497( 7448): 239- 243. DOI: 10.1038/nature12026.
    [6] ZHANG P, XU LM, GAO JS, et al. 3D collagen matrices modulate the transcriptional trajectory of bone marrow hematopoietic progenitors into macrophage lineage commitment[J]. Bioact Mater, 2022, 10: 255- 268. DOI: 10.1016/j.bioactmat.2021.08.032.
    [7] WAN LF, PAN WT, YONG YT, et al. Research progress of single-cell transcriptome sequencing technology in liver fibrosis[J]. Curr Biotechnol, 2024, 14( 5): 793- 804. DOI: 10.19586/j.2095-2341.2024.0078.

    万令飞, 潘文婷, 雍雨婷, 等. 单细胞转录组测序技术在肝纤维化中的研究进展[J]. 生物技术进展, 2024, 14( 5): 793- 804. DOI: 10.19586/j.2095-2341.2024.0078.
    [8] GUO JB. Effects of constitutive TL1A expression on myeloid cells in liver fibrogenesis and its reversal in mice[D]. Shijiazhuang: Hebei Medical University, 2016. DOI: 10.7666/d.D843844.

    郭金波. 髓系细胞高表达TL1A在实验性小鼠肝纤维化发生和逆转过程中作用的研究[D]. 石家庄: 河北医科大学, 2016. DOI: 10.7666/d.D843844.
    [9] CALCAGNO DM, CHU A, GAUL S, et al. NOD-like receptor protein 3 activation causes spontaneous inflammation and fibrosis that mimics human NASH[J]. Hepatology, 2022, 76( 3): 727- 741. DOI: 10.1002/hep.32320.
    [10] CAI BS, DONGIOVANNI P, COREY KE, et al. Macrophage MerTK promotes liver fibrosis in nonalcoholic steatohepatitis[J]. Cell Metab, 2020, 31( 2): 406- 421. e 7. DOI: 10.1016/j.cmet.2019.11.013.
    [11] LI WY, CHANG N, LI LY. Heterogeneity and function of kupffer cells in liver injury[J]. Front Immunol, 2022, 13: 940867. DOI: 10.3389/fimmu.2022.940867.
    [12] SLEVIN E, BAIOCCHI L, WU N, et al. Kupffer cells: Inflammation pathways and cell-cell interactions in alcohol-associated liver disease[J]. Am J Pathol, 2020, 190( 11): 2185- 2193. DOI: 10.1016/j.ajpath.2020.08.014.
    [13] GUILLOT A, TACKE F. Liver macrophages: Old dogmas and new insights[J]. Hepatol Commun, 2019, 3( 6): 730- 743. DOI: 10.1002/hep4.1356.
    [14] KOYAMA Y, BRENNER DA. Liver inflammation and fibrosis[J]. J Clin Invest, 2017, 127( 1): 55- 64. DOI: 10.1172/JCI88881.
    [15] KALLIS YN, SCOTTON CJ, MACKINNON AC, et al. Proteinase activated receptor 1 mediated fibrosis in a mouse model of liver injury: A role for bone marrow derived macrophages[J]. PLoS One, 2014, 9( 1): e86241. DOI: 10.1371/journal.pone.0086241.
    [16] LI J, LIU WQ, ZHANG J, et al. The role of mitochondrial quality control in liver diseases: Dawn of a therapeutic era[J]. Int J Biol Sci, 2025, 21( 4): 1767- 1783. DOI: 10.7150/ijbs.107777.
    [17] ZHAO SX, LI WC, FU N, et al. CD14+ monocytes and CD163+ macrophages correlate with the severity of liver fibrosis in patients with chronic hepatitis C[J]. Exp Ther Med, 2020, 20( 6): 228. DOI: 10.3892/etm.2020.9358.
    [18] XIANG M, LIU TT, TIAN C, et al. Kinsenoside attenuates liver fibro-inflammation by suppressing dendritic cells via the PI3K-AKT-FoxO1 pathway[J]. Pharmacol Res, 2022, 177: 106092. DOI: 10.1016/j.phrs.2022.106092.
    [19] MO C, XIE SW, GAO L, et al. Baoganning formula alleviates liver fibrosis in mice by inhibiting hepatic IDO1 expression and promoting phenotypic maturation of dendritic cells[J]. J South Med Univ, 2021, 41( 7): 1002- 1011. DOI: 10.12122/j.issn.1673-4254.2021.07.06.

    莫婵, 谢淑雯, 高磊, 等. 复方保肝宁减轻小鼠肝纤维化的机制: 抑制肝脏组织中的IDO1进而促进树突状细胞表型成熟[J]. 南方医科大学学报, 2021, 41( 7): 1002- 1011. DOI: 10.12122/j.issn.1673-4254.2021.07.06.
    [20] LI T, LIU HB, HU WY, et al. Role of inflammation in hepatic fibrosis[J]. J Clin Hepatol, 2022, 38( 10): 2368- 2372. DOI: 10.3969/j.issn.1001-5256.2022.10.032.

    李婷, 刘华宝, 胡文艳, 等. 炎症在肝纤维化中的作用[J]. 临床肝胆病杂志, 2022, 38( 10): 2368- 2372. DOI: 10.3969/j.issn.1001-5256.2022.10.032.
    [21] HORN P, TACKE F. Metabolic reprogramming in liver fibrosis[J]. Cell Metab, 2024, 36( 7): 1439- 1455. DOI: 10.1016/j.cmet.2024.05.003.
    [22] MOORING M, YEUNG GA, LUUKKONEN P, et al. Hepatocyte CYR61 polarizes profibrotic macrophages to orchestrate NASH fibrosis[J]. Sci Transl Med, 2023, 15( 715): eade3157. DOI: 10.1126/scitranslmed.ade3157.
    [23] HOU C, WANG D, ZHAO MX, et al. MANF brakes TLR4 signaling by competitively binding S100A8 with S100A9 to regulate macrophage phenotypes in hepatic fibrosis[J]. Acta Pharm Sin B, 2023, 13( 10): 4234- 4252. DOI: 10.1016/j.apsb.2023.07.027.
    [24] RAN JQ, YIN SX, ISSA R, et al. Key role of macrophages in the progression of hepatic fibrosis[J]. Hepatol Commun, 2025, 9( 1): e0602. DOI: 10.1097/hc9.0000000000000602.
    [25] CHENG S, ZOU YH, ZHANG M, et al. Single-cell RNA sequencing reveals the heterogeneity and intercellular communication of hepatic stellate cells and macrophages during liver fibrosis[J]. MedComm, 2023, 4( 5): e378. DOI: 10.1002/mco2.378.
    [26] CHEN XJ, WANG ZY, HAN S, et al. Targeting SYK of monocyte-derived macrophages regulates liver fibrosis via crosstalking with Erk/Hif1α and remodeling liver inflammatory environment[J]. Cell Death Dis, 2021, 12( 12): 1123. DOI: 10.1038/s41419-021-04403-2.
    [27] BRENIG R, POP OT, TRIANTAFYLLOU E, et al. Expression of AXL receptor tyrosine kinase relates to monocyte dysfunction and severity of cirrhosis[J]. Life Sci Alliance, 2020, 3( 1): e201900465. DOI: 10.26508/lsa.201900465.
    [28] HAMMERICH L, TACKE F. Hepatic inflammatory responses in liver fibrosis[J]. Nat Rev Gastroenterol Hepatol, 2023, 20( 10): 633- 646. DOI: 10.1038/s41575-023-00807-x.
    [29] MA PF, GAO CC, YI J, et al. Cytotherapy with M1-polarized macrophages ameliorates liver fibrosis by modulating immune microenvironment in mice[J]. J Hepatol, 2017, 67( 4): 770- 779. DOI: 10.1016/j.jhep.2017.05.022.
    [30] GWAG T, REDDY MOOLI RG, LI D, et al. Macrophage-derived thrombospondin 1 promotes obesity-associated non-alcoholic fatty liver disease[J]. JHEP Rep, 2021, 3( 1): 100193. DOI: 10.1016/j.jhepr.2020.100193.
    [31] WATANABE Y, TSUCHIYA A, SEINO S, et al. Mesenchymal stem cells and induced bone marrow-derived macrophages synergistically improve liver fibrosis in mice[J]. Stem Cells Transl Med, 2019, 8( 3): 271- 284. DOI: 10.1002/sctm.18-0105.
    [32] CRESPO M, NIKOLIC I, MORA A, et al. Myeloid p38 activation maintains macrophage-liver crosstalk and BAT thermogenesis through IL-12-FGF21 axis[J]. Hepatology, 2023, 77( 3): 874- 887. DOI: 10.1002/hep.32581.
    [33] LI ST, ZHOU B, XUE M, et al. Macrophage-specific FGF12 promotes liver fibrosis progression in mice[J]. Hepatology, 2023, 77( 3): 816- 833. DOI: 10.1002/hep.32640.
    [34] HAN JQ, ZHANG X, LAU JK, et al. Bone marrow-derived macrophage contributes to fibrosing steatohepatitis through activating hepatic stellate cells[J]. J Pathol, 2019, 248( 4): 488- 500. DOI: 10.1002/path.5275.
    [35] TANG JJ, YAN ZJ, FENG QY, et al. The roles of neutrophils in the pathogenesis of liver diseases[J]. Front Immunol, 2021, 12: 625472. DOI: 10.3389/fimmu.2021.625472.
    [36] SAIJOU E, ENOMOTO Y, MATSUDA M, et al. Neutrophils alleviate fibrosis in the CCl(4)-induced mouse chronic liver injury model[J]. Hepatol Commun, 2018, 2( 6): 703- 717. DOI: 10.1002/hep4.1178.
    [37] WANG XL, SEO W, PARK SH, et al. microRNA-223 restricts liver fibrosis by inhibiting the TAZ-IHH-GLI2 and PDGF signaling pathways via the crosstalk of multiple liver cell types[J]. Int J Biol Sci, 2021, 17( 4): 1153- 1167. DOI: 10.7150/ijbs.58365.
    [38] QI JS, PING DB, SUN X, et al. The role of neutrophils in liver fibrosis[J]. Chin Hepatol, 2023, 28( 9): 1127- 1130. DOI: 10.14000/j.cnki.issn.1008-1704.2023.09.029.

    齐婧姝, 平大冰, 孙鑫, 等. 中性粒细胞在肝纤维化中的作用[J]. 肝脏, 2023, 28( 9): 1127- 1130. DOI: 10.14000/j.cnki.issn.1008-1704.2023.09.029.
    [39] BABUTA M, MOREL C, DE CARVALHO RIBEIRO M, et al. Neutrophil extracellular traps activate hepatic stellate cells and monocytes via NLRP3 sensing in alcohol-induced acceleration of MASH fibrosis[J]. Gut, 2024, 73( 11): 1854- 1869. DOI: 10.1136/gutjnl-2023-331447.
    [40] XIA YJ, WANG Y, XIONG Q, et al. Neutrophil extracellular traps promote MASH fibrosis by metabolic reprogramming of HSC[J]. Hepatology, 2025, 81( 3): 947- 961. DOI: 10.1097/HEP.0000000000000762.
    [41] van der WINDT DJ, SUD V, ZHANG HJ, et al. Neutrophil extracellular traps promote inflammation and development of hepatocellular carcinoma in nonalcoholic steatohepatitis[J]. Hepatology, 2018, 68( 4): 1347- 1360. DOI: 10.1002/hep.29914.
    [42] ZHOU ZJ, LAI PH, ZHANG SL, et al. The relationship between hepatic myeloid-derived suppressor cells and clinicopathological parameters in patients with chronic liver disease[J]. Biomed Res Int, 2021, 2021: 6612477. DOI: 10.1155/2021/6612477.
    [43] LI TY, YANG Y, ZHOU G, et al. Immune suppression in chronic hepatitis B infection associated liver disease: A review[J]. World J Gastroenterol, 2019, 25( 27): 3527- 3537. DOI: 10.3748/wjg.v25.i27.3527.
    [44] SENDO S, SAEGUSA J, MORINOBU A. Myeloid-derived suppressor cells in non-neoplastic inflamed organs[J]. Inflamm Regen, 2018, 38: 19. DOI: 10.1186/s41232-018-0076-7.
    [45] JI B. Study on the mechanism of myeloid suppressor cells in the occurrence of liver fibrosis in mice[D]. Changchun: Jilin University, 2013.

    纪柏. 髓样抑制细胞在小鼠肝纤维化发生中的影响机制研究[D]. 长春: 吉林大学, 2013.
    [46] GUO FY, WANG DW. Research advances on pathogenesis of liver fibrosis and related therapeutic drugs[J]. Prog Pharm Sci, 2024, 48( 11): 838- 848. DOI: 10.20053/j.issn1001-5094.2024.11.004.

    郭飞宇, 王多伟. 肝纤维化发生机制及相关治疗药物研究进展[J]. 药学进展, 2024, 48( 11): 838- 848. DOI: 10.20053/j.issn1001-5094.2024.11.004.
    [47] SHEN B, LU LG. Mechanism and therapeutic strategy of macrophage myeloid-epithelial-reproductive tyrosine kinase promoting NASH fibrosis[J]. Chin Hepatol, 2020, 25( 10): 1021- 1023. DOI: 10.14000/j.cnki.issn.1008-1704.2020.10.002.

    沈波, 陆伦根. 巨噬细胞髓细胞-上皮-生殖酪氨酸激酶促进NASH纤维化的机制及治疗策略[J]. 肝脏, 2020, 25( 10): 1021- 1023. DOI: 10.14000/j.cnki.issn.1008-1704.2020.10.002.
    [48] XU J, JIN WL, LI X. A new perspective in the treatment of liver fibrosis: Targeting macrophage metabolism[J]. J Clin Hepatol, 2023, 39( 4): 922- 928. DOI: 10.3969/j.issn.1001-5256.2023.04.027.

    许钧, 金卫林, 李汛. 肝纤维化治疗的新视角: 靶向巨噬细胞代谢[J]. 临床肝胆病杂志, 2023, 39( 4): 922- 928. DOI: 10.3969/j.issn.1001-5256.2023.04.027.
  • 加载中
图(4)
计量
  • 文章访问数:  7
  • HTML全文浏览量:  1
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-18
  • 录用日期:  2025-07-01
  • 出版日期:  2026-01-25
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回