| [1] |
WANG Q, ZHANG CR, TANG YM. Research advances in glucose and lipid metabolism disorders in different types of chronic liver diseases[J]. J Clin Hepatol, 2022, 38( 8): 1937- 1940. DOI: 10.3969/j.issn.1001-5256.2022.08.043.
王倩, 张宸瑞, 唐映梅. 不同类型慢性肝病糖脂代谢紊乱研究进展[J]. 临床肝胆病杂志, 2022, 38( 8): 1937- 1940. DOI: 10.3969/j.issn.1001-5256.2022.08.043.
|
| [2] |
REHM J, SAMOKHVALOV AV, SHIELD KD. Global burden of alcoholic liver diseases[J]. J Hepatol, 2013, 59( 1): 160- 168. DOI: 10.1016/j.jhep.2013.03.007.
|
| [3] |
GAO XX, LIU LX. Progress in the epidemiology and pathogenesis of alcoholic liver diseases[J/OL]. Chin J Digest Med Imageol: Electronic Edition, 2016, 6( 2): 62- 65. DOI: 10.3877/cma.j.issn.2095-2015.2016.02.004.
高潇雪, 刘立新. 酒精性肝病流行病学及发病机制研究进展[J/OL]. 中华消化病与影像杂志(电子版), 2016, 6( 2): 62- 65. DOI: 10.3877/cma.j.issn.2095-2015.2016.02.004.
|
| [4] |
DEVARBHAVI H, ASRANI SK, ARAB JP, et al. Global burden of liver disease: 2023 update[J]. J Hepatol, 2023, 79( 2): 516- 537. DOI: 10.1016/j.jhep.2023.03.017.
|
| [5] |
JIANG XJ, STOCKWELL BR, CONRAD M. Ferroptosis: Mechanisms, biology and role in disease[J]. Nat Rev Mol Cell Biol, 2021, 22( 4): 266- 282. DOI: 10.1038/s41580-020-00324-8.
|
| [6] |
LI X, TAO L, ZHONG MJ, et al. Ferroptosis and liver diseases[J]. J Zhejiang Univ Med Sci, 2024, 53( 6): 747- 755. DOI: 10.3724/zdxbyxb-2024-0566.
李欣, 陶亮, 钟美娟, 等. 铁死亡参与肝疾病研究进展[J]. 浙江大学学报(医学版), 2024, 53( 6): 747- 755. DOI: 10.3724/zdxbyxb-2024-0566.
|
| [7] |
MA YD, HU XY, KE R. Research progress on treatment of alcoholic liver disease based on ferroptosis mechanism of traditional Chinese medicine[J]. J Liaoning Univ Tradit Chin Med, 2024, 26( 11): 148- 153. DOI: 10.13194/j.issn.1673-842X.2024.11.029.
马伊笛, 胡晓阳, 客蕊. 中药经铁死亡途径治疗酒精性肝病研究进展[J]. 辽宁中医药大学学报, 2024, 26( 11): 148- 153. DOI: 10.13194/j.issn.1673-842X.2024.11.029.
|
| [8] |
CHEN X, KANG R, KROEMER G, et al. Broadening horizons: The role of ferroptosis in cancer[J]. Nat Rev Clin Oncol, 2021, 18( 5): 280- 296. DOI: 10.1038/s41571-020-00462-0.
|
| [9] |
SEIBT TM, PRONETH B, CONRAD M. Role of GPX4 in ferroptosis and its pharmacological implication[J]. Free Radic Biol Med, 2019, 133: 144- 152. DOI: 10.1016/j.freeradbiomed.2018.09.014.
|
| [10] |
JU Z, ZHANG R, YANG AG, et al. Mutant p53 promotes iron death of human colon and lung cancer cells by down-regulating glutathione peroxidase 4(GPX4) expression and increasing the production of lipid reactive oxygen species[J]. Chin J Cell Mol Immunol, 2022, 38( 6): 522- 527. DOI: 10.13423/j.cnki.cjcmi.009378.
雎转, 张瑞, 杨安钢, 等. 突变型p53通过下调谷胱甘肽过氧化物酶4(GPX4)表达和增加脂质活性氧产生促进人结肠癌和肺癌细胞的铁死亡[J]. 细胞与分子免疫学杂志, 2022, 38( 6): 522- 527. DOI: 10.13423/j.cnki.cjcmi.009378.
|
| [11] |
CHEN C, HUANG Y, XIA PP, et al. Long noncoding RNA Meg3 mediates ferroptosis induced by oxygen and glucose deprivation combined with hyperglycemia in rat brain microvascular endothelial cells, through modulating the p53/GPX4 axis[J]. Eur J Histochem, 2021, 65( 3): 3224. DOI: 10.4081/ejh.2021.3224.
|
| [12] |
WANG M, MA L. Study on the mechanism of Dange Jiecheng Decoction on alcoholic liver disease based on network pharmacology and experimental verification[J]. Chin J Integr Tradit West Med Liver Dis, 2023, 33( 8): 716- 722. DOI: 10.3969/j.issn.1005-0264.2023.008.009.
王铭, 马丽. 基于网络药理学与实验验证的丹葛解酲汤干预酒精性肝病机制研究[J]. 中西医结合肝病杂志, 2023, 33( 8): 716- 722. DOI: 10.3969/j.issn.1005-0264.2023.008.009.
|
| [13] |
WANG M, XU JH, MA L. Mechanism of action of Dange Jiecheng decoction in a rat model of alcoholic liver disease based on the Kelch-like ECH-associated protein1/nuclear factor erythroid 2-related factor 2 signaling pathway[J]. J Clin Hepatol, 2023, 39( 5): 1119- 1125. DOI: 10.3969/j.issn.1001-5256.2023.05.018.
王铭, 徐建虎, 马丽. 基于Keap1/Nrf2信号通路探讨丹葛解酲汤对酒精性肝病大鼠模型的作用机制[J]. 临床肝胆病杂志, 2023, 39( 5): 1119- 1125. DOI: 10.3969/j.issn.1001-5256.2023.05.018.
|
| [14] |
QI LMG, ZHANG J, DUAN HJ, et al. Comparison and evaluation of methods for establishing animal models of alcoholic liver disease[J]. Pharmacol Clin Chin Mater Med, 2022, 38( 5): 153- 161. DOI: 10.13412/j.cnki.zyyl.20220627.001.
其乐木格, 张娟, 段海婧, 等. 酒精性肝病动物模型建立方法的比较与评价[J]. 中药药理与临床, 2022, 38( 5): 153- 161. DOI: 10.13412/j.cnki.zyyl.20220627.001.
|
| [15] |
YUAN HS, PRATTE J, GIARDINA C. Ferroptosis and its potential as a therapeutic target[J]. Biochem Pharmacol, 2021, 186: 114486. DOI: 10.1016/j.bcp.2021.114486.
|
| [16] |
SUN YT, CHEN P, ZHAI BT, et al. The emerging role of ferroptosis in inflammation[J]. Biomed Pharmacother, 2020, 127: 110108. DOI: 10.1016/j.biopha.2020.110108.
|
| [17] |
ZHUANG JL, RUAN FH, QIAN TM, et al. Ferroptosis and metabolic syndrome: From basic mechanism to therapeutic strategy[J]. Chin J Evid Based Cardiovasc Med, 2025, 17( 2): 246- 251. DOI: 10.3969/j.issn.1674-4055.2025.02.23.
庄金龙, 阮发晖, 钱涛铭, 等. 铁死亡与代谢综合征: 从基础机制到潜在治疗策略[J]. 中国循证心血管医学杂志, 2025, 17( 2): 246- 251. DOI: 10.3969/j.issn.1674-4055.2025.02.23.
|
| [18] |
LIU J, KANG R, TANG DL. Signaling pathways and defense mechanisms of ferroptosis[J]. FEBS J, 2022, 289( 22): 7038- 7050. DOI: 10.1111/febs.16059.
|
| [19] |
URSINI F, MAIORINO M. Lipid peroxidation and ferroptosis: The role of GSH and GPx4[J]. Free Radic Biol Med, 2020, 152: 175- 185. DOI: 10.1016/j.freeradbiomed.2020.02.027.
|
| [20] |
TIAN Y, LU J, HAO XQ, et al. FTH1 inhibits ferroptosis through ferritinophagy in the 6-OHDA model of Parkinson’s disease[J]. Neurotherapeutics, 2020, 17( 4): 1796- 1812. DOI: 10.1007/s13311-020-00929-z.
|
| [21] |
DANG YN, HE Q, YANG SY, et al. FTH1- and SAT1-induced astrocytic ferroptosis is involved in Alzheimer’s disease: Evidence from single-cell transcriptomic analysis[J]. Pharmaceuticals(Basel), 2022, 15( 10): 1177. DOI: 10.3390/ph15101177.
|
| [22] |
XU R, WANG WN, ZHANG WL. Ferroptosis and the bidirectional regulatory factor p53[J]. Cell Death Discov, 2023, 9( 1): 197. DOI: 10.1038/s41420-023-01517-8.
|
| [23] |
ZHANG W, LIU Y, LIAO Y, et al. GPX4, ferroptosis, and diseases[J]. Biomed Pharmacother, 2024, 174: 116512. DOI: 10.1016/j.biopha.2024.116512.
|
| [24] |
ZHANG ZL, LIN XY, WANG WR, et al. Effect of modified Shaofu Zhuyutang on ferroptosis in ectopic endometrial tissues of rats with endometriosis based on MDM4/p53/GPX4 signaling pathway[J]. Chin J Exp Tradit Med Formulae, 2025, 31( 4): 39- 47. DOI: 10.13422/j.cnki.syfjx.20242245.
张作良, 林祥羽, 王婉润, 等. 基于MDM4/p53/GPX4信号通路探讨加味少腹逐瘀汤对子宫内膜异位症大鼠异位子宫内膜组织铁死亡的影响[J]. 中国实验方剂学杂志, 2025, 31( 4): 39- 47. DOI: 10.13422/j.cnki.syfjx.20242245.
|
| [25] |
ZHANG JH, HUO H, XU RQ, et al. Effect of MDM2 on ferroptosis in colon cancer cells through the P53/GPX4 pathway[J/OL]. J Yunnan Minzu Univ Nat Sci Ed, 2025.[ Epub ahead of print]
张金华, 霍虹, 许瑞琪, 等. MDM2通过P53/GPX4通路对结肠癌细胞铁死亡的影响[J/OL]. 云南民族大学学报(自然科学版), 2025.[网络首发]
|
| [26] |
GONG W, WANG Y, LI Q, et al. Regulation of SLC7A11 by LncRNA GPRC5D-AS1 mediates ferroptosis in skeletal muscle: Mechanistic exploration of sarcopenia[J]. Front Mol Biosci, 2025, 12: 1557218. DOI: 10.3389/fmolb.2025.1557218.
|
| [27] |
YU XY, WU WW, HAO JJ, et al. Ginger protects against vein graft remodeling by precisely modulating ferroptotic stress in vascular smooth muscle cell dedifferentiation[J]. J Pharm Anal, 2025, 15( 2): 101053. DOI: 10.1016/j.jpha.2024.101053.
|
| [28] |
ZHOU YQ, ZHOU HX, HUA L, et al. Verification of ferroptosis and pyroptosis and identification of PTGS2 as the hub gene in human coronary artery atherosclerosis[J]. Free Radic Biol Med, 2021, 171: 55- 68. DOI: 10.1016/j.freeradbiomed.2021.05.009.
|