| [1] |
HAMMERICH L, TACKE F. Hepatic inflammatory responses in liver fibrosis[J]. Nat Rev Gastroenterol Hepatol, 2023, 20( 10): 633- 646. DOI: 10.1038/s41575-023-00807-x.
|
| [2] |
WEN YK, LAMBRECHT J, JU C, et al. Hepatic macrophages in liver homeostasis and diseases-diversity, plasticity and therapeutic opportunities[J]. Cell Mol Immunol, 2021, 18( 1): 45- 56. DOI: 10.1038/s41423-020-00558-8.
|
| [3] |
PAPACHRISTOFOROU E, RAMACHANDRAN P. Macrophages as key regulators of liver health and disease[J]. Int Rev Cell Mol Biol, 2022, 368: 143- 212. DOI: 10.1016/bs.ircmb.2022.04.006.
|
| [4] |
CHEN YN, HU MR, WANG L, et al. Macrophage M1/M2 polarization[J]. Eur J Pharmacol, 2020, 877: 173090. DOI: 10.1016/j.ejphar.2020.173090.
|
| [5] |
SIERRO F, EVRARD M, RIZZETTO S, et al. A liver capsular network of monocyte-derived macrophages restricts hepatic dissemination of intraperitoneal bacteria by neutrophil recruitment[J]. Immunity, 2017, 47( 2): 374- 388. e 6. DOI: 10.1016/j.immuni.2017.07.018.
|
| [6] |
GUILLIAMS M, BONNARDEL J, HAEST B, et al. Spatial proteogenomics reveals distinct and evolutionarily conserved hepatic macrophage niches[J]. Cell, 2022, 185( 2): 379- 396. e 38. DOI: 10.1016/j.cell.2021.12.018.
|
| [7] |
WANG Z, DU KL, JIN NK, et al. Macrophage in liver fibrosis: Identities and mechanisms[J]. Int Immunopharmacol, 2023, 120: 110357. DOI: 10.1016/j.intimp.2023.110357.
|
| [8] |
JAITIN DA, ADLUNG L, THAISS CA, et al. Lipid-associated macrophages control metabolic homeostasis in a Trem2-dependent manner[J]. Cell, 2019, 178( 3): 686- 698. e 14. DOI: 10.1016/j.cell.2019.05.054.
|
| [9] |
DECZKOWSKA A, WEINER A, AMIT I. The physiology, pathology, and potential therapeutic applications of the TREM2 signaling pathway[J]. Cell, 2020, 181( 6): 1207- 1217. DOI: 10.1016/j.cell.2020.05.003.
|
| [10] |
GANGULY S, ROSENTHAL SB, ISHIZUKA K, et al. Lipid-associated macrophages’ promotion of fibrosis resolution during MASH regression requires TREM2[J]. Proc Natl Acad Sci USA, 2024, 121( 35): e2405746121. DOI: 10.1073/pnas.2405746121.
|
| [11] |
WANG XC, HE QF, ZHOU CL, et al. Prolonged hypernutrition impairs TREM2-dependent efferocytosis to license chronic liver inflammation and NASH development[J]. Immunity, 2023, 56( 1): 58- 77. e 11. DOI: 10.1016/j.immuni.2022.11.013.
|
| [12] |
WEI XL, WU DQ, LI J, et al. Myeloid beta-arrestin 2 depletion attenuates metabolic dysfunction-associated steatohepatitis via the metabolic reprogramming of macrophages[J]. Cell Metab, 2024, 36( 10): 2281- 2297. e 7. DOI: 10.1016/j.cmet.2024.08.010.
|
| [13] |
HU SW, LI R, GONG DX, et al. Atf3-mediated metabolic reprogramming in hepatic macrophage orchestrates metabolic dysfunction-associated steatohepatitis[J]. Sci Adv, 2024, 10( 30): eado3141. DOI: 10.1126/sciadv.ado3141.
|
| [14] |
XU J, JIN WL, LI X. A new perspective in the treatment of liver fibrosis: Targeting macrophage metabolism[J]. J Clin Hepatol, 2023, 39( 4): 922- 928. DOI: 10.3969/j.issn.1001-5256.2023.04.027.
许钧, 金卫林, 李汛. 肝纤维化治疗的新视角: 靶向巨噬细胞代谢[J]. 临床肝胆病杂志, 2023, 39( 4): 922- 928. DOI: 10.3969/j.issn.1001-5256.2023.04.027.
|
| [15] |
KORNBERG MD. The immunologic Warburg effect: Evidence and therapeutic opportunities in autoimmunity[J]. Wiley Interdiscip Rev Syst Biol Med, 2020, 12( 5): e1486. DOI: 10.1002/wsbm.1486.
|
| [16] |
INOMATA Y, OH JW, TANIGUCHI K, et al. Downregulation of miR-122-5p activates glycolysis via PKM2 in kupffer cells of rat and mouse models of non-alcoholic steatohepatitis[J]. Int J Mol Sci, 2022, 23( 9): 5230. DOI: 10.3390/ijms23095230.
|
| [17] |
MORENO-FERNANDEZ ME, GILES DA, OATES JR, et al. PKM2-dependent metabolic skewing of hepatic Th17 cells regulates pathogenesis of non-alcoholic fatty liver disease[J]. Cell Metab, 2021, 33( 6): 1187- 1204. e 9. DOI: 10.1016/j.cmet.2021.04.018.
|
| [18] |
PALSSON-MCDERMOTT EM, CURTIS AM, GOEL G, et al. Pyruvate kinase M2 regulates Hif-1α activity and IL-1β induction and is a critical determinant of the Warburg effect in LPS-activated macrophages[J]. Cell Metab, 2015, 21( 1): 65- 80. DOI: 10.1016/j.cmet.2014.12.005.
|
| [19] |
RAO JH, WANG H, NI M, et al. FSTL1 promotes liver fibrosis by reprogramming macrophage function through modulating the intracellular function of PKM2[J]. Gut, 2022, 71( 12): 2539- 2550. DOI: 10.1136/gutjnl-2021-325150.
|
| [20] |
FAN N, ZHANG XY, ZHAO W, et al. Covalent inhibition of pyruvate kinase M2 reprograms metabolic and inflammatory pathways in hepatic macrophages against non-alcoholic fatty liver disease[J]. Int J Biol Sci, 2022, 18( 14): 5260- 5275. DOI: 10.7150/ijbs.73890.
|
| [21] |
SCHILPEROORT M, NGAI D, KATERELOS M, et al. PFKFB2-mediated glycolysis promotes lactate-driven continual efferocytosis by macrophages[J]. Nat Metab, 2023, 5( 3): 431- 444. DOI: 10.1038/s42255-023-00736-8.
|
| [22] |
KHOMICH O, IVANOV AV, BARTOSCH B. Metabolic hallmarks of hepatic stellate cells in liver fibrosis[J]. Cells, 2019, 9( 1): 24. DOI: 10.3390/cells9010024.
|
| [23] |
TRIVEDI P, WANG S, FRIEDMAN SL. The power of plasticity-metabolic regulation of hepatic stellate cells[J]. Cell Metab, 2021, 33( 2): 242- 257. DOI: 10.1016/j.cmet.2020.10.026.
|
| [24] |
HORN P, TACKE F. Metabolic reprogramming in liver fibrosis[J]. Cell Metab, 2024, 36( 7): 1439- 1455. DOI: 10.1016/j.cmet.2024.05.003.
|
| [25] |
YANG T, ZHAO DL, ZHOU YY, et al. Glucose, lipid and protein metabolism of hepatic stellate cells: A novel target against liver fibrosis[J]. Chin Pharmacol Bull, 2021, 37( 7): 902- 905. DOI: 10.3969/j.issn.1001-1978.2021.07.004.
杨婷, 赵丹雳, 周媛媛, 等. 肝星状细胞糖脂蛋白质代谢: 抗肝纤维化的新靶标[J]. 中国药理学通报, 2021, 37( 7): 902- 905. DOI: 10.3969/j.issn.1001-1978.2021.07.004.
|
| [26] |
SHMARAKOV IO, JIANG HF, LIU J, et al. Hepatic stellate cell activation: A source for bioactive lipids[J]. Biochim Biophys Acta Mol Cell Biol Lipids, 2019, 1864( 5): 629- 642. DOI: 10.1016/j.bbalip.2019.02.004.
|
| [27] |
LAI KKY, KWEON SM, CHI F, et al. Stearoyl-CoA desaturase promotes liver fibrosis and tumor development in mice via a Wnt positive-signaling loop by stabilization of low-density lipoprotein-receptor-related proteins 5 and 6[J]. Gastroenterology, 2017, 152( 6): 1477- 1491. DOI: 10.1053/j.gastro.2017.01.021.
|
| [28] |
FONDEVILA MF, FERNANDEZ U, HERAS V, et al. Inhibition of carnitine palmitoyltransferase 1A in hepatic stellate cells protects against fibrosis[J]. J Hepatol, 2022, 77( 1): 15- 28. DOI: 10.1016/j.jhep.2022.02.003.
|
| [29] |
LUQUERO A, VILAHUR G, CASANI L, et al. Differential cholesterol uptake in liver cells: A role for PCSK9[J]. FASEB J, 2022, 36( 5): e22291. DOI: 10.1096/fj.202101660RR.
|
| [30] |
WANG FX, CHEN L, KONG DS, et al. Canonical Wnt signaling promotes HSC glycolysis and liver fibrosis through an LDH-A/HIF-1α transcriptional complex[J]. Hepatology, 2024, 79( 3): 606- 623. DOI: 10.1097/HEP.0000000000000569.
|
| [31] |
CHEN YP, CHOI SS, MICHELOTTI GA, et al. Hedgehog controls hepatic stellate cell fate by regulating metabolism[J]. Gastroenterology, 2012, 143( 5): 1319- 1329. e 11. DOI: 10.1053/j.gastro.2012.07.115.
|
| [32] |
MEJIAS M, GALLEGO J, NARANJO-SUAREZ S, et al. CPEB4 increases expression of PFKFB3 to induce glycolysis and activate mouse and human hepatic stellate cells, promoting liver fibrosis[J]. Gastroenterology, 2020, 159( 1): 273- 288. DOI: 10.1053/j.gastro.2020.03.008.
|
| [33] |
WANG FX, JIA Y, LI MM, et al. Blockade of glycolysis-dependent contraction by oroxylin a via inhibition of lactate dehydrogenase-a in hepatic stellate cells[J]. Cell Commun Signal, 2019, 17( 1): 11. DOI: 10.1186/s12964-019-0324-8.
|
| [34] |
QU HD, LIU JL, ZHANG D, et al. Glycolysis in chronic liver diseases: Mechanistic insights and therapeutic opportunities[J]. Cells, 2023, 12( 15): 1930. DOI: 10.3390/cells12151930.
|
| [35] |
ZHENG DD, JIANG YC, QU C, et al. Pyruvate kinase M2 tetramerization protects against hepatic stellate cell activation and liver fibrosis[J]. Am J Pathol, 2020, 190( 11): 2267- 2281. DOI: 10.1016/j.ajpath.2020.08.002.
|
| [36] |
RHO H, TERRY AR, CHRONIS C, et al. Hexokinase 2-mediated gene expression via histone lactylation is required for hepatic stellate cell activation and liver fibrosis[J]. Cell Metab, 2023, 35( 8): 1406- 1423.e8. DOI: 10.1016/j.cmet.2023.06.013.
|