中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R
Volume 39 Issue 1
Jan.  2023
Turn off MathJax
Article Contents

Role of glucose and lipid metabolism mediated by the bile acid receptor Takeda G protein-coupled receptor 5 in nonalcoholic fatty liver disease

DOI: 10.3969/j.issn.1001-5256.2023.01.025
Research funding:

National Natural Science Foundation of China (81473651);

Traditional Chinese Medicine Science Research Project of Henan Province (2018JDZX005);

Traditional Chinese Medicine Science Research Project of Henan Province (2019JDZX2051);

Key Science and Technology Project of Henan Province (202102310495);

TCM Discipline Construction Project of Characteristic Backbone Disciplines of Henan Province (STG-ZYXKY-2020024)

More Information
  • Corresponding author: ZHAO Wenxia, zhao-wenxia@163.com (ORCID: 0000-0001-9070-4703)
  • Received Date: 2022-05-15
  • Accepted Date: 2022-06-30
  • Published Date: 2023-01-20
  • Nonalcoholic fatty liver disease (NAFLD) has gradually become a prominent cause affecting human liver health, and the development and progression of NAFLD are associated with metabolic dysfunction, with glucose and lipid metabolism disorder as the key link in this process. Takeda G protein-coupled receptor 5 (TGR5) is one of the main receptors of bile acid and is extensively expressed in the body, and glucose and lipid metabolism mediated by TGR5 plays an important role in the human body. This article summarizes the role and mechanism of TGR5 in glucose and lipid metabolism and the research findings of the treatment of NAFLD based on TGR5, in order to provide a reference for basic and clinical research.

     

  • loading
  • [1]
    RAZA S, RAJAK S, UPADHYAY A, et al. Current treatment paradigms and emerging therapies for NAFLD/NASH[J]. Front Biosci (Landmark Ed), 2021, 26(2): 206-237. DOI: 10.2741/4892.
    [2]
    LOOMBA R, SANYAL AJ. The global NAFLD epidemic[J]. Nat Rev Gastroenterol Hepatol, 2013, 10(11): 686-690. DOI: 10.1038/nrgastro.2013.171.
    [3]
    YOUNOSSI ZM, KOENIG AB, ABDELATIF D, et al. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes[J]. Hepatology, 2016, 64(1): 73-84. DOI: 10.1002/hep.28431.
    [4]
    ESLAM M, SANYAL AJ, GEORGE J, et al. MAFLD: A consensus-driven proposed nomenclature for metabolic associated fatty liver disease[J]. Gastroenterology, 2020, 158(7): 1999-2014. e1. DOI: 10.1053/j.gastro.2019.11.312.
    [5]
    BECHMANN LP, KOCABAYOGLU P, SOWA JP, et al. Free fatty acids repress small heterodimer partner (SHP) activation and adiponectin counteracts bile acid-induced liver injury in superobese patients with nonalcoholic steatohepatitis[J]. Hepatology, 2013, 57(4): 1394-1406. DOI: 10.1002/hep.26225.
    [6]
    ZHANG Y, LI JX, WANG YL. Role of bile acid metabolism and related receptors in the development and progression of non -alcoholic fatty liver disease[J]. J Clin Hepatol, 2020, 36(6): 1374-1377. DOI: 10.3969/j.issn.1001-5256.2020.06.040.

    张阳, 李军祥, 王允亮. 胆汁酸代谢及其受体在非酒精性脂肪性肝病发生发展中的作用[J]. 临床肝胆病杂志, 2020, 36(6): 1374-1377. DOI: 10.3969/j.issn.1001-5256.2020.06.040.
    [7]
    ZHAO HD, YANG F, ZHAN L. Research progress on pathogenesis of non-alcoholic fatty liver disease[J]. Acad J Chinese PLA Postgrad Med Sch, 2022, 43(3): 366-371. DOI: 10.3969/j.issn.2095-5227.2022.03.022.

    赵瀚东, 杨帆, 詹丽. 非酒精性脂肪性肝病发病机制研究进展[J]. 解放军医学院学报, 2022, 43(3): 366-371. DOI: 10.3969/j.issn.2095-5227.2022.03.022.
    [8]
    MARUYAMA T, MIYAMOTO Y, NAKAMURA T, et al. Identification of membrane-type receptor for bile acids (M-BAR)[J]. Biochem Biophys Res Commun, 2002, 298(5): 714-719. DOI: 10.1016/s0006-291x(02)02550-0.
    [9]
    HOLTER MM, CHIRIKJIAN MK, GOVANI VN, et al. TGR5 signaling in hepatic metabolic health[J]. Nutrients, 2020, 12(9): 2598. DOI: 10.3390/nu12092598.
    [10]
    POLS TW, NORIEGA LG, NOMURA M, et al. The bile acid membrane receptor TGR5 as an emerging target in metabolism and inflammation[J]. J Hepatol, 2011, 54(6): 1263-1272. DOI: 10.1016/j.jhep.2010.12.004.
    [11]
    KUMAR DP, RAJAGOPAL S, MAHAVADI S, et al. Activation of transmembrane bile acid receptor TGR5 stimulates insulin secretion in pancreatic β cells[J]. Biochem Biophys Res Commun, 2012, 427(3): 600-605. DOI: 10.1016/j.bbrc.2012.09.104.
    [12]
    HOLTER MM, CHIRIKJIAN MK, BRIERE DA, et al. Compound 18 improves glucose tolerance in a hepatocyte TGR5-dependent manner in mice[J]. Nutrients, 2020, 12(7): 2124. DOI: 10.3390/nu12072124.
    [13]
    SATO H, MACCHIARULO A, THOMAS C, et al. Novel potent and selective bile acid derivatives as TGR5 agonists: biological screening, structure-activity relationships, and molecular modeling studies[J]. J Med Chem, 2008, 51(6): 1831-1841. DOI: 10.1021/jm7015864.
    [14]
    NAKHI A, WONG HL, WELDY M, et al. Structural modifications that increase gut restriction of bile acid derivatives[J]. RSC Med Chem, 2021, 12(3): 394-405. DOI: 10.1039/d0md00425a.
    [15]
    THOMAS C, GIOIELLO A, NORIEGA L, et al. TGR5-mediated bile acid sensing controls glucose homeostasis[J]. Cell Metab, 2009, 10(3): 167-177. DOI: 10.1016/j.cmet.2009.08.001.
    [16]
    CHAUDHARI SN, HARRIS DA, ALIAKBARIAN H, et al. Bariatric surgery reveals a gut-restricted TGR5 agonist with anti-diabetic effects[J]. Nat Chem Biol, 2021, 17(1): 20-29. DOI: 10.1038/s41589-020-0604-z.
    [17]
    DRUCKER DJ. The biology of incretin hormones[J]. Cell Metab, 2006, 3(3): 153-165. DOI: 10.1016/j.cmet.2006.01.004.
    [18]
    PARKER HE, WALLIS K, LE ROUX CW, et al. Molecular mechanisms underlying bile acid-stimulated glucagon-like peptide-1 secretion[J]. Br J Pharmacol, 2012, 165(2): 414-423. DOI: 10.1111/j.1476-5381.2011.01561.x.
    [19]
    BRIGHTON CA, RIEVAJ J, KUHRE RE, et al. Bile acids trigger GLP-1 release predominantly by accessing basolaterally located G protein-coupled bile acid receptors[J]. Endocrinology, 2015, 156(11): 3961-3970. DOI: 10.1210/en.2015-1321.
    [20]
    GOLDSPINK DA, LU VB, BILLING LJ, et al. Mechanistic insights into the detection of free fatty and bile acids by ileal glucagon-like peptide-1 secreting cells[J]. Mol Metab, 2018, 7: 90-101. DOI: 10.1016/j.molmet.2017.11.005.
    [21]
    VETTORAZZI JF, RIBEIRO RA, BORCK PC, et al. The bile acid TUDCA increases glucose-induced insulin secretion via the cAMP/PKA pathway in pancreatic beta cells[J]. Metabolism, 2016, 65(3): 54-63. DOI: 10.1016/j.metabol.2015.10.021.
    [22]
    MACZEWSKY J, KAISER J, GRESCH A, et al. TGR5 activation promotes stimulus-secretion coupling of pancreatic β-cells via a PKA-dependent pathway[J]. Diabetes, 2019, 68(2): 324-336. DOI: 10.2337/db18-0315.
    [23]
    SRIKANTHAN P, KARLAMANGLA AS. Relative muscle mass is inversely associated with insulin resistance and prediabetes. Findings from the third National Health and Nutrition Examination Survey[J]. J Clin Endocrinol Metab, 2011, 96(9): 2898-2903. DOI: 10.1210/jc.2011-0435.
    [24]
    HAN TS, AL-GINDAN YY, GOVAN L, et al. Associations of BMI, waist circumference, body fat, and skeletal muscle with type 2 diabetes in adults[J]. Acta Diabetol, 2019, 56(8): 947-954. DOI: 10.1007/s00592-019-01328-3.
    [25]
    SASAKI T, KUBOYAMA A, MITA M, et al. The exercise-inducible bile acid receptor Tgr5 improves skeletal muscle function in mice[J]. J Biol Chem, 2018, 293(26): 10322-10332. DOI: 10.1074/jbc.RA118.002733.
    [26]
    HUANG S, MA S, NING M, et al. TGR5 agonist ameliorates insulin resistance in the skeletal muscles and improves glucose homeostasis in diabetic mice[J]. Metabolism, 2019, 99: 45-56. DOI: 10.1016/j.metabol.2019.07.003.
    [27]
    SASAKI T, WATANABE Y, KUBOYAMA A, et al. Muscle-specific TGR5 overexpression improves glucose clearance in glucose-intolerant mice[J]. J Biol Chem, 2021, 296: 100131. DOI: 10.1074/jbc.RA120.016203.
    [28]
    VASSILEVA G, HU W, HOOS L, et al. Gender-dependent effect of Gpbar1 genetic deletion on the metabolic profiles of diet-induced obese mice[J]. J Endocrinol, 2010, 205(3): 225-232. DOI: 10.1677/JOE-10-0009.
    [29]
    FINN PD, RODRIGUEZ D, KOHLER J, et al. Intestinal TGR5 agonism improves hepatic steatosis and insulin sensitivity in Western diet-fed mice[J]. Am J Physiol Gastrointest Liver Physiol, 2019, 316(3): G412-G424. DOI: 10.1152/ajpgi.00300.2018.
    [30]
    CARINO A, CIPRIANI S, MARCHIANÒ S, et al. Gpbar1 agonism promotes a Pgc-1α-dependent browning of white adipose tissue and energy expenditure and reverses diet-induced steatohepatitis in mice[J]. Sci Rep, 2017, 7(1): 13689. DOI: 10.1038/s41598-017-13102-y.
    [31]
    CARINO A, MARCHIANÒ S, BIAGIOLI M, et al. Agonism for the bile acid receptor GPBAR1 reverses liver and vascular damage in a mouse model of steatohepatitis[J]. FASEB J, 2019, 33(2): 2809-2822. DOI: 10.1096/fj.201801373RR.
    [32]
    BERTHOLET AM, KAZAK L, CHOUCHANI ET, et al. Mitochondrial patch clamp of beige adipocytes reveals UCP1-positive and UCP1-negative cells both exhibiting futile creatine cycling[J]. Cell Metab, 2017, 25(4): 811-822. e4. DOI: 10.1016/j.cmet.2017.03.002.
    [33]
    DONEPUDI AC, BOEHME S, LI F, et al. G-protein-coupled bile acid receptor plays a key role in bile acid metabolism and fasting-induced hepatic steatosis in mice[J]. Hepatology, 2017, 65(3): 813-827. DOI: 10.1002/hep.28707.
    [34]
    PELLICCIARI R, GIOIELLO A, MACCHIARULO A, et al. Discovery of 6alpha-ethyl-23(S)-methylcholic acid (S-EMCA, INT-777) as a potent and selective agonist for the TGR5 receptor, a novel target for diabesity[J]. J Med Chem, 2009, 52(24): 7958-7961. DOI: 10.1021/jm901390p.
    [35]
    GENET C, STREHLE A, SCHMIDT C, et al. Structure-activity relationship study of betulinic acid, a novel and selective TGR5 agonist, and its synthetic derivatives: potential impact in diabetes[J]. J Med Chem, 2010, 53(1): 178-190. DOI: 10.1021/jm900872z.
    [36]
    HE B, JIANG J, SHI Z, et al. Pure total flavonoids from citrus attenuate non-alcoholic steatohepatitis via regulating the gut microbiota and bile acid metabolism in mice[J]. Biomed Pharmacother, 2021, 135: 111183. DOI: 10.1016/j.biopha.2020.111183.
    [37]
    XUE YN. Mechanism of scutellariae rhizoma coptidis on improving nonalcoholic fatty liver disease based on FXR/CYP7A1 pathway[D]. Yichang: China Three Gorges University, 2021.

    薛亚楠. 基于FXR/CYP7A1通路探究黄芩黄连药对改善非酒精性脂肪性肝病的作用机制[D]. 宜昌: 三峡大学, 2021.
    [38]
    ZHOU TT. Correlation between intestinal flora-cholic acid-liver metabolic axis and NAFLD and intervention effect of green brick tea[D]. Nanchang: Jiangxi University of Traditional Chinese Medicine, 2021.

    周婷婷. 肠道菌群-胆汁酸-肝代谢轴与NAFLD的相关性及青砖茶干预作用研究[D]. 南昌: 江西中医药大学, 2021.
    [39]
    DING L, YANG Q, ZHANG E, et al. Notoginsenoside Ft1 acts as a TGR5 agonist but FXR antagonist to alleviate high fat diet-induced obesity and insulin resistance in mice[J]. Acta Pharm Sin B, 2021, 11(6): 1541-1554. DOI: 10.1016/j.apsb.2021.03.038.
    [40]
    LI M, ZHOU W, DANG Y, et al. Berberine compounds improves hyperglycemia via microbiome mediated colonic TGR5-GLP pathway in db/db mice[J]. Biomed Pharmacother, 2020, 132: 110953. DOI: 10.1016/j.biopha.2020.110953.
    [41]
    LI T, HOLMSTROM SR, KIR S, et al. The G protein-coupled bile acid receptor, TGR5, stimulates gallbladder filling[J]. Mol Endocrinol, 2011, 25(6): 1066-1071. DOI: 10.1210/me.2010-0460.
    [42]
    MASYUK TV, MASYUK AI, LORENZO PISARELLO M, et al. TGR5 contributes to hepatic cystogenesis in rodents with polycystic liver diseases through cyclic adenosine monophosphate/Gαs signaling[J]. Hepatology, 2017, 66(4): 1197-1218. DOI: 10.1002/hep.29284.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views (1768) PDF downloads(128) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return