中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

人工智能在胰腺癌诊治中的应用现状

马昱 贾峰 刘楷宇 刘亚辉

引用本文:
Citation:

人工智能在胰腺癌诊治中的应用现状

DOI: 10.12449/JCH241032
利益冲突声明:本文不存在任何利益冲突。
作者贡献声明:马昱负责设计论文框架,起草论文;贾峰负责关键点分析,论文修改;马昱、刘楷宇负责文献查找;刘亚辉负责拟定写作思路,指导撰写文章并最后定稿。
详细信息
    通信作者:

    刘亚辉, yahui@jlu.edu.cn (ORCID: 0000-0002-5431-1440)

Current status of the application of artificial intelligence in the diagnosis and treatment of pancreatic cancer

More Information
    Corresponding author: LIU Yahui, yahui@jlu.edu.cn (ORCID: 0000-0002-5431-1440)
  • 摘要: 胰腺癌是消化系统常见的恶性肿瘤,早期诊断率低,手术病死率高,治愈率低,总体预后差。近年来,随着人工智能在医学领域的不断发展,机器学习、深度学习等人工智能技术被广泛应用于医学研究中。本文综述了近年来人工智能技术在胰腺癌筛查、诊断、治疗、并发症及预后预测等方面的应用,为人工智能在胰腺癌诊治中的应用提供依据和新思路。

     

  • [1] KENNER B, CHARI ST, KELSEN D, et al. Artificial intelligence and early detection of pancreatic cancer: 2020 summative review[J]. Pancreas, 2021, 50( 3): 251- 279. DOI: 10.1097/MPA.0000000000001762.
    [2] KAUL V, ENSLIN S, GROSS SA. History of artificial intelligence in medicine[J]. Gastrointest Endosc, 2020, 92( 4): 807- 812. DOI: 10.1016/j.gie.2020.06.040.
    [3] CAI J, CHEN HD, LU M, et al. Advances in the epidemiology of pancreatic cancer: Trends, risk factors, screening, and prognosis[J]. Cancer Lett, 2021, 520: 1- 11. DOI: 10.1016/j.canlet.2021.06.027.
    [4] HUANG JJ, LOK V, NGAI CH, et al. Worldwide burden of, risk factors for, and trends in pancreatic cancer[J]. Gastroenterology, 2021, 160( 3): 744- 754. DOI: 10.1053/j.gastro.2020.10.007.
    [5] GRANATA V, FUSCO R, SETOLA SV, et al. Risk assessment and pancreatic cancer: Diagnostic management and artificial intelligence[J]. Cancers, 2023, 15( 2): 351. DOI: 10.3390/cancers15020351.
    [6] YANG JS, XU RY, WANG CC, et al. Early screening and diagnosis strategies of pancreatic cancer: A comprehensive review[J]. Cancer Commun, 2021, 41( 12): 1257- 1274. DOI: 10.1002/cac2.12204.
    [7] PEREIRA SP, OLDFIELD L, NEY A, et al. Early detection of pancreatic cancer[J]. Lancet Gastroenterol Hepatol, 2020, 5( 7): 698- 710. DOI: 10.1016/S2468-1253(19)30416-9.
    [8] STOFFEL EM, BRAND RE, GOGGINS M. Pancreatic cancer: Changing epidemiology and new approaches to risk assessment, early detection, and prevention[J]. Gastroenterology, 2023, 164( 5): 752- 765. DOI: 10.1053/j.gastro.2023.02.012.
    [9] BOURSI B, FINKELMAN B, GIANTONIO BJ, et al. A clinical prediction model to assess risk for pancreatic cancer among patients with new-onset diabetes[J]. Gastroenterology, 2017, 152( 4): 840- 850. DOI: 10.1053/j.gastro.2016.11.046.
    [10] PLACIDO D, YUAN B, HJALTELIN JX, et al. A deep learning algorithm to predict risk of pancreatic cancer from disease trajectories[J]. Nat Med, 2023, 29( 5): 1113- 1122. DOI: 10.1038/s41591-023-02332-5.
    [11] BLYUSS O, ZAIKIN A, CHEREPANOVA V, et al. Development of PancRISK, a urine biomarker-based risk score for stratified screening of pancreatic cancer patients[J]. Br J Cancer, 2020, 122( 5): 692- 696. DOI: 10.1038/s41416-019-0694-0.
    [12] CAO K, XIA YD, YAO JW, et al. Large-scale pancreatic cancer detection via non-contrast CT and deep learning[J]. Nat Med, 2023, 29( 12): 3033- 3043. DOI: 10.1038/s41591-023-02640-w.
    [13] Chinese Pancreatic Surgery Association, Chinese Society of Surgery, Chinese Medical Association. Guidelines for the diagnosis and treatment of pancreatic cancer in China(2021)[J]. Chin J Dig Surg, 2021, 20( 7): 713- 729. DOI: 10.3760/cma.j.cn115610-20210618-00289.

    中华医学会外科学分会胰腺外科学组. 中国胰腺癌诊治指南(2021)[J]. 中华消化外科杂志, 2021, 20( 7): 713- 729. DOI: 10.3760/cma.j.cn115610-20210618-00289.
    [14] MIZRAHI JD, SURANA R, VALLE JW, et al. Pancreatic cancer[J]. Lancet, 2020, 395( 10242): 2008- 2020. DOI: 10.1016/S0140-6736(20)30974-0.
    [15] CHEN PT, WU TH, WANG PC, et al. Pancreatic cancer detection on CT scans with deep learning: A nationwide population-based study[J]. Radiology, 2023, 306( 1): 172- 182. DOI: 10.1148/radiol.220152.
    [16] MA H, LIU ZX, ZHANG JJ, et al. Construction of a convolutional neural network classifier developed by computed tomography images for pancreatic cancer diagnosis[J]. World J Gastroenterol, 2020, 26( 34): 5156- 5168. DOI: 10.3748/wjg.v26.i34.5156.
    [17] MUKHERJEE S, PATRA A, KHASAWNEH H, et al. Radiomics-based machine-learning models can detect pancreatic cancer on prediagnostic computed tomography scans at a substantial lead time before clinical diagnosis[J]. Gastroenterology, 2022, 163( 5): 1435- 1446. DOI: 10.1053/j.gastro.2022.06.066.
    [18] MARYA NB, POWERS PD, CHARI ST, et al. Utilisation of artificial intelligence for the development of an EUS-convolutional neural network model trained to enhance the diagnosis of autoimmune pancreatitis[J]. Gut, 2021, 70( 7): 1335- 1344. DOI: 10.1136/gutjnl-2020-322821.
    [19] TONOZUKA R, ITOI T, NAGATA N, et al. Deep learning analysis for the detection of pancreatic cancer on endosonographic images: A pilot study[J]. J Hepatobiliary Pancreat Sci, 2021, 28( 1): 95- 104. DOI: 10.1002/jhbp.825.
    [20] HUANG BW, HUANG HR, ZHANG ST, et al. Artificial intelligence in pancreatic cancer[J]. Theranostics, 2022, 12( 16): 6931- 6954. DOI: 10.7150/thno.77949.
    [21] MAHMOUDI T, KOUZAHKANAN ZM, RADMARD AR, et al. Segmentation of pancreatic ductal adenocarcinoma(PDAC) and surrounding vessels in CT images using deep convolutional neural networks and texture descriptors[J]. Sci Rep, 2022, 12( 1): 3092. DOI: 10.1038/s41598-022-07111-9.
    [22] XIE TS, WANG XY, LI ML, et al. Pancreatic ductal adenocarcinoma: A radiomics nomogram outperforms clinical model and TNM staging for survival estimation after curative resection[J]. Eur Radiol, 2020, 30( 5): 2513- 2524. DOI: 10.1007/s00330-019-06600-2.
    [23] WITKIEWICZ AK, MCMILLAN EA, BALAJI U, et al. Whole-exome sequencing of pancreatic cancer defines genetic diversity and therapeutic targets[J]. Nat Commun, 2015, 6: 6744. DOI: 10.1038/ncomms7744.
    [24] BAGANTE F, SPOLVERATO G, RUZZENENTE A, et al. Artificial neural networks for multi-omics classifications of hepato-pancreato-biliary cancers: Towards the clinical application of genetic data[J]. Eur J Cancer, 2021, 148: 348- 358. DOI: 10.1016/j.ejca.2021.01.049.
    [25] WEI Q, RAMSEY SA. Predicting chemotherapy response using a variational autoencoder approach[J]. BMC Bioinformatics, 2021, 22( 1): 453. DOI: 10.1186/s12859-021-04339-6.
    [26] CHEN DS, MELLMAN I. Elements of cancer immunity and the cancer-immune set point[J]. Nature, 2017, 541( 7637): 321- 330. DOI: 10.1038/nature21349.
    [27] BIAN Y, LIU YF, LI J, et al. Machine learning for computed tomography radiomics: Prediction of tumor-infiltrating lymphocytes in patients with pancreatic ductal adenocarcinoma[J]. Pancreas, 2022, 51( 5): 549- 558. DOI: 10.1097/MPA.0000000000002069.
    [28] WATSON MD, BAIMAS-GEORGE MR, MURPHY KJ, et al. Pure and hybrid deep learning models can predict pathologic tumor response to neoadjuvant therapy in pancreatic adenocarcinoma: A pilot study[J]. Am Surg, 2021, 87( 12): 1901- 1909. DOI: 10.1177/0003134820982557.
    [29] Study Group of Pancreatic Surgery in Chinese Society of Surgery of Chinese Medical Association; Pancreatic Disease Committee of Chinese Research Hospital Association; Editorial Board of Chinese Journal of Surgery. A consensus statement on the diagnosis, treatment, and prevention of common complications after pancreatic surgery(2017)[J]. Chin J Surg, 2017, 55( 5): 328- 334. DOI: 10.3760/cma.j.issn.0529-5815.2017.05.003.

    中华医学会外科学分会胰腺外科学组, 中国研究型医院学会胰腺病专业委员会, 中华外科杂志编辑部. 胰腺术后外科常见并发症诊治及预防的专家共识(2017)[J]. 中华外科杂志, 2017, 55( 5): 328- 334. DOI: 10.3760/cma.j.issn.0529-5815.2017.05.003.
    [30] CALLERY MP, PRATT WB, KENT TS, et al. A prospectively validated clinical risk score accurately predicts pancreatic fistula after pancreatoduodenectomy[J]. J Am Coll Surg, 2013, 216( 1): 1- 14. DOI: 10.1016/j.jamcollsurg.2012.09.002.
    [31] SHEN ZY, CHEN HD, WANG WS, et al. Machine learning algorithms as early diagnostic tools for pancreatic fistula following pancreaticoduodenectomy and guide drain removal: A retrospective cohort study[J]. Int J Surg, 2022, 102: 106638. DOI: 10.1016/j.ijsu.2022.106638.
    [32] YOO J, YOON SH, LEE DH, et al. Body composition analysis using convolutional neural network in predicting postoperative pancreatic fistula and survival after pancreatoduodenectomy for pancreatic cancer[J]. Eur J Radiol, 2023, 169: 111182. DOI: 10.1016/j.ejrad.2023.111182.
    [33] KAMBAKAMBA P, MANNIL M, HERRERA PE, et al. The potential of machine learning to predict postoperative pancreatic fistula based on preoperative, non-contrast-enhanced CT: A proof-of-principle study[J]. Surgery, 2020, 167( 2): 448- 454. DOI: 10.1016/j.surg.2019.09.019.
    [34] HAN IW, CHO K, RYU Y, et al. Risk prediction platform for pancreatic fistula after pancreatoduodenectomy using artificial intelligence[J]. World J Gastroenterol, 2020, 26( 30): 4453- 4464. DOI: 10.3748/wjg.v26.i30.4453.
    [35] WALCZAK S, VELANOVICH V. An evaluation of artificial neural networks in predicting pancreatic cancer survival[J]. J Gastrointest Surg, 2017, 21( 10): 1606- 1612. DOI: 10.1007/s11605-017-3518-7.
    [36] LIN JX, YIN MY, LIU L, et al. The development of a prediction model based on random survival forest for the postoperative prognosis of pancreatic cancer: A SEER-based study[J]. Cancers, 2022, 14( 19): 4667. DOI: 10.3390/cancers14194667.
    [37] HE M, CHEN XY, WELS M, et al. Computed tomography-based radiomics evaluation of postoperative local recurrence of pancreatic ductal adenocarcinoma[J]. Acad Radiol, 2023, 30( 4): 680- 688. DOI: 10.1016/j.acra.2022.05.019.
    [38] YOKOYAMA S, HAMADA T, HIGASHI M, et al. Predicted prognosis of patients with pancreatic cancer by machine learning[J]. Clin Cancer Res, 2020, 26( 10): 2411- 2421. DOI: 10.1158/1078-0432.CCR-19-1247.
    [39] LEE W, PARK HJ, LEE HJ, et al. Preoperative data-based deep learning model for predicting postoperative survival in pancreatic cancer patients[J]. Int J Surg, 2022, 105: 106851. DOI: 10.1016/j.ijsu.2022.106851.
    [40] KUMAR V, GU YH, BASU S, et al. Radiomics: The process and the challenges[J]. Magn Reson Imaging, 2012, 30( 9): 1234- 1248. DOI: 10.1016/j.mri.2012.06.010.
    [41] VARGHESE BA, CEN SY, HWANG DH, et al. Texture analysis of imaging: What radiologists need to know[J]. AJR Am J Roentgenol, 2019, 212( 3): 520- 528. DOI: 10.2214/AJR.18.20624.
    [42] KATTA MR, KALLURU PKR, BAVISHI DA, et al. Artificial intelligence in pancreatic cancer: Diagnosis, limitations, and the future prospects-a narrative review[J]. J Cancer Res Clin Oncol, 2023, 149( 9): 6743- 6751. DOI: 10.1007/s00432-023-04625-1.
    [43] LIANG ZX, YE LS, YANG Y. Application of artificial intelligence in liver transplantation[J]. J Clin Hepatol, 2022, 38( 1): 30- 34. DOI: 10.3969/j.issn.1001-5256.2022.01.005.

    梁智星, 叶林森, 杨扬. 人工智能在肝移植中的应用[J]. 临床肝胆病杂志, 2022, 38( 1): 30- 34. DOI: 10.3969/j.issn.1001-5256.2022.01.005.
  • 加载中
计量
  • 文章访问数:  587
  • HTML全文浏览量:  60
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-28
  • 录用日期:  2024-03-20
  • 出版日期:  2024-10-25
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回