中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

人工智能在原发性肝癌诊疗中的应用

方驰华 蔡伟

引用本文:
Citation:

人工智能在原发性肝癌诊疗中的应用

DOI: 10.3969/j.issn.1001-5256.2022.01.004
基金项目: 

国家重点研发计划数字诊断与治疗装备研发重点专项 (2016YFC0106500);

国家重大科研仪器研制项目 (81627805);

国家自然科学基金数学天元基金 (12026602);

安徽省自然科学基金青年基金 (2008085QH418)

利益冲突声明:所有作者均声明不存在利益冲突。
作者贡献声明:方驰华负责选题,拟定写作思路和最终定稿;蔡伟负责撰写论文。
详细信息
    通信作者:

    方驰华,fangch_dr@163.com

Application of artificial intelligence in the diagnosis and treatment of primary liver cancer

Research funding: 

National Key Research and Development Program (2016YFC0106500);

National Natural Science Foundation of China (81627805);

National Natural Science Foundation of China Mathematics Tianyuan Foundation (12026602);

Youth Program of Natural Science Foundation of Anhui Province (2008085QH418)

  • 摘要: 在医疗大数据时代, 人工智能技术在医学中的应用日益广泛。通过对海量医学数据进行高效管理、信息挖掘后可以得到关于疾病发生发展、生存预后等有益信息。近年来, 人工智能技术在原发性肝癌中的应用亦取得了一些成果。本文将详述其在肝癌诊断和治疗中的应用现状及前景。

     

  • [1] JIMÉNEZ PÉREZ M, GRANDE RG. Application of artificial intelligence in the diagnosis and treatment of hepatocellular carcinoma: A review[J]. World J Gastroenterol, 2020, 26(37): 5617-5628. DOI: 10.3748/wjg.v26.i37.5617.
    [2] SIEGEL RL, MILLER KD, JEMAL A. Cancer statistics, 2020[J]. CA Cancer J Clin, 2020, 70(1): 7-30. DOI: 10.3322/caac.21590.
    [3] AN L, ZENG HM, ZHENG RS, et al. Liver cancer epidemiology in China, 2015[J]. Chin J Oncol, 2019, 41(10): 721-727. DOI: 10.3760/cma.j.issn.0253-3766.2019.10.001.

    安澜, 曾红梅, 郑荣寿, 等. 2015年中国肝癌流行情况分析[J]. 中华肿瘤杂志, 2019, 41(10): 721-727. DOI: 10.3760/cma.j.issn.0253-3766.2019.10.001.
    [4] BHARTI P, MITTAL D, ANANTHASIVAN R. Preliminary study of chronic liver classification on ultrasound images using an ensemble model[J]. Ultrason Imaging, 2018, 40(6): 357-379. DOI: 10.1177/0161734618787447.
    [5] LIU X, SONG JL, WANG SH, et al. Learning to diagnose cirrhosis with liver capsule guided ultrasound image classification[J]. Sensors (Basel), 2017, 17(1): 149. DOI: 10.3390/s17010149.
    [6] SCHMAUCH B, HERENT P, JEHANNO P, et al. Diagnosis of focal liver lesions from ultrasound using deep learning[J]. Diagn Interv Imaging, 2019, 100(4): 227-233. DOI: 10.1016/j.diii.2019.02.009.
    [7] GUO LH, WANG D, QIAN YY, et al. A two-stage multi-view learning framework based computer-aided diagnosis of liver tumors with contrast enhanced ultrasound images[J]. Clin Hemorheol Microcirc, 2018, 69(3): 343-354. DOI: 10.3233/CH-170275.
    [8] MOKRANE FZ, LU L, VAVASSEUR A, et al. Radiomics machine-learning signature for diagnosis of hepatocellular carcinoma in cirrhotic patients with indeterminate liver nodules[J]. Eur Radiol, 2020, 30(1): 558-570. DOI: 10.1007/s00330-019-06347-w.
    [9] YASAKA K, AKAI H, ABE O, et al. Deep learning with convolutional neural network for differentiation of liver masses at dynamic contrast-enhanced CT: A preliminary study[J]. Radiology, 2018, 286(3): 887-896. DOI: 10.1148/radiol.2017170706.
    [10] VIVANTI R, SZESKIN A, LEV-COHAIN N, et al. Automatic detection of new tumors and tumor burden evaluation in longitudinal liver CT scan studies[J]. Int J Comput Assist Radiol Surg, 2017, 12(11): 1945-1957. DOI: 10.1007/s11548-017-1660-z.
    [11] PREIS O, BLAKE MA, SCOTT JA. Neural network evaluation of PET scans of the liver: A potentially useful adjunct in clinical interpretation[J]. Radiology, 2011, 258(3): 714-721. DOI: 10.1148/radiol.10100547.
    [12] KIANI A, UYUMAZTURK B, RAJPURKAR P, et al. Impact of a deep learning assistant on the histopathologic classification of liver cancer[J]. NPJ Digit Med, 2020, 3: 23. DOI: 10.1038/s41746-020-0232-8.
    [13] LIAO H, XIONG T, PENG J, et al. Classification and prognosis prediction from histopathological images of hepatocellular carcinoma by a fully automated pipeline based on machine learning[J]. Ann Surg Oncol, 2020, 27(7): 2359-2369. DOI: 10.1245/s10434-019-08190-1.
    [14] CAI W, HE B, HU M, et al. A radiomics-based nomogram for the preoperative prediction of posthepatectomy liver failure in patients with hepatocellular carcinoma[J]. Surg Oncol, 2019, 28: 78-85. DOI: 10.1016/j.suronc.2018.11.013.
    [15] FORNER A, REIG M, BRUIX J. Hepatocellular carcinoma[J]. Lancet, 2018, 391(10127): 1301-1314. DOI: 10.1016/S0140-6736(18)30010-2.
    [16] MA X, WEI J, GU D, et al. Preoperative radiomics nomogram for microvascular invasion prediction in hepatocellular carcinoma using contrast-enhanced CT[J]. Eur Radiol, 2019, 29(7): 3595-3605. DOI: 10.1007/s00330-018-5985-y.
    [17] ZHOU W, ZHANG L, WANG K, et al. Malignancy characterization of hepatocellular carcinomas based on texture analysis of contrast-enhanced MR images[J]. J Magn Reson Imaging, 2017, 45(5): 1476-1484. DOI: 10.1002/jmri.25454.
    [18] DONG Y, ZHOU L, XIA W, et al. Preoperative prediction of microvascular invasion in hepatocellular carcinoma: Initial application of a radiomic algorithm based on grayscale ultrasound images[J]. Front Oncol, 2020, 10: 353. DOI: 10.3389/fonc.2020.00353.
    [19] JI GW, ZHU FP, XU Q, et al. Machine-learning analysis of contrast-enhanced CT radiomics predicts recurrence of hepatocellular carcinoma after resection: A multi-institutional study[J]. EBioMedicine, 2019, 50: 156-165. DOI: 10.1016/j.ebiom.2019.10.057.
    [20] SAILLARD C, SCHMAUCH B, LAIFA O, et al. Predicting survival after hepatocellular carcinoma resection using deep learning on histological slides[J]. Hepatology, 2020, 72(6): 2000-2013. DOI: 10.1002/hep.31207.
    [21] SCHOENBERG MB, BUCHER JN, KOCH D, et al. A novel machine learning algorithm to predict disease free survival after resection of hepatocellular carcinoma[J]. Ann Transl Med, 2020, 8(7): 434. DOI: 10.21037/atm.2020.04.16.
    [22] MORSHID A, ELSAYES KM, KHALAF AM, et al. A machine learning model to predict hepatocellular carcinoma response to transcatheter arterial chemoembolization[J]. Radiol Artif Intell, 2019, 1(5): e180021. DOI: 10.1148/ryai.2019180021.
    [23] PENG J, KANG S, NING Z, et al. Residual convolutional neural network for predicting response of transarterial chemoembolization in hepatocellular carcinoma from CT imaging[J]. Eur Radiol, 2020, 30(1): 413-424. DOI: 10.1007/s00330-019-06318-1.
    [24] LIU D, LIU F, XIE X, et al. Accurate prediction of responses to transarterial chemoembolization for patients with hepatocellular carcinoma by using artificial intelligence in contrast-enhanced ultrasound[J]. Eur Radiol, 2020, 30(4): 2365-2376. DOI: 10.1007/s00330-019-06553-6.
    [25] ABAJIAN A, MURALI N, SAVIC LJ, et al. Predicting treatment response to image-guided therapies using machine learning: An example for trans-arterial treatment of hepatocellular carcinoma[J]. J Vis Exp, 2018, (140): 58382. DOI: 10.3791/58382.
    [26] CESARETTI M, BRUSTIA R, GOUMARD C, et al. Use of artificial intelligence as an innovative method for liver graft macrosteatosis assessment[J]. Liver Transpl, 2020, 26(10): 1224-1232. DOI: 10.1002/lt.25801.
    [27] NAM JY, LEE JH, BAE J, et al. Novel model to predict HCC recurrence after liver transplantation obtained using deep learning: A multicenter study[J]. Cancers (Basel), 2020, 12(10): 2791. DOI: 10.3390/cancers12102791.
    [28] MOLINARI M, AYLOO S, TSUNG A, et al. Prediction of perioperative mortality of cadaveric liver transplant recipients during their evaluations[J]. Transplantation, 2019, 103(10): e297-e307. DOI: 10.1097/TP.0000000000002810.
    [29] BRICEÑO J, CRUZ-RAMÍREZ M, PRIETO M, et al. Use of artificial intelligence as an innovative donor-recipient matching model for liver transplantation: Results from a multicenter Spanish study[J]. J Hepatol, 2014, 61(5): 1020-1028. DOI: 10.1016/j.jhep.2014.05.039.
    [30] BERTSIMAS D, KUNG J, TRICHAKIS N, et al. Development and validation of an optimized prediction of mortality for candidates awaiting liver transplantation[J]. Am J Transplant, 2019, 19(4): 1109-1118. DOI: 10.1111/ajt.15172.
    [31] TAN YF, ZHANG W, YANG JY, et al. Application of artificial intelligence in diagnosis and treatment of liver cancer[J]. Chin J Bases Clin Gen Surg, 2020, 27(9): 1057-1061. DOI: 10.7507/1007-9424.202008023.

    谭一非, 章蔚, 杨家印, 等. 人工智能在肝癌诊治中的应用进展[J]. 中国普外基础与临床杂志, 2020, 27(9): 1057-1061. DOI: 10.7507/1007-9424.202008023.
    [32] VILLANUEVA A. Hepatocellular carcinoma[J]. N Engl J Med, 2019, 380(15): 1450-1462. DOI: 10.1056/NEJMra1713263.
    [33] CITONE M, FANELLI F, FALCONE G, et al. A closer look to the new frontier of artificial intelligence in the percutaneous treatment of primary lesions of the liver[J]. Med Oncol, 2020, 37(6): 55. DOI: 10.1007/s12032-020-01380-y.
    [34] AHN SJ, LEE JM, LEE DH, et al. Real-time US-CT/MR fusion imaging for percutaneous radiofrequency ablation of hepatocellular carcinoma[J]. J Hepatol, 2017, 66(2): 347-354. DOI: 10.1016/j.jhep.2016.09.003.
    [35] HUANG Q, ZENG Q, LONG Y, et al. Fusion imaging techniques and contrast-enhanced ultrasound for thermal ablation of hepatocellular carcinoma - A prospective randomized controlled trial[J]. Int J Hyperthermia, 2019, 36(1): 1207-1215. DOI: 10.1080/02656736.2019.1687945.
    [36] YANG WL, LEE YE, CHEN MH, et al. In-silico drug screening and potential target identification for hepatocellular carcinoma using Support Vector Machines based on drug screening result[J]. Gene, 2013, 518(1): 201-208. DOI: 10.1016/j.gene.2012.11.030.
    [37] SHI B, WANG JL. Research advances in artificial intelligence in predicting prognosis of patients with hepatocellular carcinoma[J]. Acad J Chinese PLA Postgrad Med Sch, 2020, 41(9): 922-925. DOI: 10.3969/j.issn.2095-5227.2020.09.017.

    史斌, 王建立. 人工智能对肝癌患者预后预测的研究进展[J]. 解放军医学院学报, 2020, 41(9): 922-925. DOI: 10.3969/j.issn.2095-5227.2020.09.017.
  • 加载中
计量
  • 文章访问数:  881
  • HTML全文浏览量:  156
  • PDF下载量:  144
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-11
  • 录用日期:  2021-11-19
  • 出版日期:  2022-01-20
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回