中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铁死亡在胆管癌中的作用机制

杨铭钰 杨震 任万华

引用本文:
Citation:

铁死亡在胆管癌中的作用机制

DOI: 10.3969/j.issn.1001-5256.2022.04.043
基金项目: 

国家自然科学基金 (81972606)

山东省自然科学基金 (ZR2019MH005)

利益冲突声明:所有作者均声明不存在利益冲突。
作者贡献声明:杨铭钰负责收集数据,撰写论文;杨震、任万华负责拟定写作思路,指导撰写文章并最后定稿。
详细信息
    通信作者:

    杨震,uclnn@hotmail.com

Mechanism of action of ferroptosis in cholangiocarcinoma

Research funding: 

National Natural Science Foundation of China (81972606);

Shandong Provincial Natural Science Foundation of China (ZR2019MH005)

More Information
  • 摘要: 胆管癌发病率和死亡率不断上升,研究探索新的治疗靶点具有重要意义。铁死亡是一种新型的铁依赖性细胞氧化损伤的细胞死亡方式,与癌症中的铁代谢及氧化应激失衡密切相关,已成为肿瘤领域的研究热点。介绍了铁死亡相关机制,并在此基础上分析铁死亡参与胆管癌发生发展的研究进展,阐明探讨铁死亡相关调控机制在胆管癌恶性进展过程中的作用具有重要临床价值。

     

  • 图  1  细胞铁死亡调控机制示意图

    注:ACSL4,长链酰基辅酶a合成酶家族成员4; ALOX-15,花生四烯酸-15脂氧合酶; CoQ10,辅酶Q10; Cysteine,半胱氨酸; Cystine,胱氨酸; Ferritin,铁蛋白; Ferritinophage,铁自噬; FSP1,铁死亡调控蛋白1; Glutamate,谷氨酸; GSSG,氧化型谷胱甘肽; LIP,不稳定铁池; LOX,脂氧合酶; LPCAT3,溶血磷脂酰胆碱酰基转移酶3; NADPH,还原型烟酰胺腺嘌呤二核苷酸磷酸; NFE2L2,红细胞衍生核因子2样蛋白2; NRF2,核因子E2相关因子2; PUFA,多不饱和脂肪酸; SAT1,精胺N1-乙酰转移酶1; SLC3A2,溶质载体家族3成员2; SLC7A11,溶质载体家族7成员11; Transferrin,转铁蛋白; TfR1,转铁蛋白受体1。

    Figure  1.  The schematic diagram of ferroptosis regulation mechanism

  • [1] DIXON SJ, LEMBERG KM, LAMPRECHT MR, et al. Ferroptosis: An iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5): 1060-1072. DOI: 10.1016/j.cell.2012.03.042.
    [2] YAMADA N, KARASAWA T, KIMURA H, et al. Ferroptosis driven by radical oxidation of n-6 polyunsaturated fatty acids mediates acetaminophen-induced acute liver failure[J]. Cell Death Dis, 2020, 11(2): 144. DOI: 10.1038/s41419-020-2334-2.
    [3] LI J, CAO F, YIN HL, et al. Ferroptosis: Past, present and future[J]. Cell Death Dis, 2020, 11(2): 88. DOI: 10.1038/s41419-020-2298-2.
    [4] XU X, LAI Y, HUA ZC. Apoptosis and apoptotic body: Disease message and therapeutic target potentials[J]. Biosci Rep, 2019, 39(1): BSR20180992. DOI: 10.1042/BSR20180992.
    [5] GALLUZZI L, GREEN DR. Autophagy-independent functions of the autophagy machinery[J]. Cell, 2019, 177(7): 1682-1699. DOI: 10.1016/j.cell.2019.05.026.
    [6] LEE H, ZANDKARIMI F, ZHANG Y, et al. Energy-stress-mediated AMPK activation inhibits ferroptosis[J]. Nat Cell Biol, 2020, 22(2): 225-234. DOI: 10.1038/s41556-020-0461-8.
    [7] CHEN X, KANG R, KROEMER G, et al. Broadening horizons: The role of ferroptosis in cancer[J]. Nat Rev Clin Oncol, 2021, 18(5): 280-296. DOI: 10.1038/s41571-020-00462-0.
    [8] ZHANG FY, ADILA·YKP, ZHAO JM, et al. Mechanism of ferroptosis and its role in liver diseases[J]. J Clin Hepatol, 2021, 37(6): 1454-1458. DOI: 10.3969/j.issn.1001-5256.2021.06.049.

    张飞宇, 阿迪拉·亚克普, 赵金明, 等. 铁死亡的发生机制及在肝脏疾病中的作用[J]. 临床肝胆病杂志, 2021, 37(6): 1454-1458. DOI: 10.3969/j.issn.1001-5256.2021.06.049.
    [9] DIXON SJ, WINTER GE, MUSAVI LS, et al. Human haploid cell genetics reveals roles for lipid metabolism genes in nonapoptotic cell death[J]. ACS Chem Biol, 2015, 10(7): 1604-1609. DOI: 10.1021/acschembio.5b00245.
    [10] FEI W, CHEN D, TANG H, et al. Targeted GSH-exhausting and hydroxyl radical self-producing manganese-silica nanomissiles for MRI guided ferroptotic cancer therapy[J]. Nanoscale, 2020, 12(32): 16738-16754. DOI: 10.1039/d0nr02396e.
    [11] BANNING A, BRIGELIUS-FLOHÉ R. NF-kappaB, Nrf2, and HO-1 interplay in redox-regulated VCAM-1 expression[J]. Antioxid Redox Signal, 2005, 7(7-8): 889-899. DOI: 10.1089/ars.2005.7.889.
    [12] YANG WS, SRIRAMARATNAM R, WELSCH ME, et al. Regulation of ferroptotic cancer cell death by GPX4[J]. Cell, 2014, 156(1-2): 317-331. DOI: 10.1016/j.cell.2013.12.010.
    [13] JIANG L, KON N, LI T, et al. Ferroptosis as a p53-mediated activity during tumour suppression[J]. Nature, 2015, 520(7545): 57-62. DOI: 10.1038/nature14344.
    [14] SATO M, KUSUMI R, HAMASHIMA S, et al. The ferroptosis inducer erastin irreversibly inhibits system xc- and synergizes with cisplatin to increase cisplatin's cytotoxicity in cancer cells[J]. Sci Rep, 2018, 8(1): 968. DOI: 10.1038/s41598-018-19213-4.
    [15] CHEN D, TAVANA O, CHU B, et al. NRF2 is a major target of ARF in p53-independent tumor suppression[J]. Mol Cell, 2017, 68(1): 224-232. e4. DOI: 10.1016/j.molcel.2017.09.009.
    [16] SHIMADA K, SKOUTA R, KAPLAN A, et al. Global survey of cell death mechanisms reveals metabolic regulation of ferroptosis[J]. Nat Chem Biol, 2016, 12(7): 497-503. DOI: 10.1038/nchembio.2079.
    [17] SILVA I, RAUSCH V, PECCERELLA T, et al. Hypoxia enhances H2O2-mediated upregulation of hepcidin: Evidence for NOX4-mediated iron regulation[J]. Redox Biol, 2018, 16: 1-10. DOI: 10.1016/j.redox.2018.02.005.
    [18] JIA F, SONG N, WANG W, et al. High dietary iron supplement induces the nigrostriatal dopaminergic neurons lesion in transgenic mice expressing mutant A53T human alpha-synuclein[J]. Front Aging Neurosci, 2018, 10: 97. DOI: 10.3389/fnagi.2018.00097.
    [19] SUN X, OU Z, XIE M, et al. HSPB1 as a novel regulator of ferroptotic cancer cell death[J]. Oncogene, 2015, 34(45): 5617-5625. DOI: 10.1038/onc.2015.32.
    [20] SUN X, OU Z, CHEN R, et al. Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells[J]. Hepatology, 2016, 63(1): 173-184. DOI: 10.1002/hep.28251.
    [21] YANG M, LI X, LI H, et al. Baicalein inhibits RLS3-induced ferroptosis in melanocytes[J]. Biochem Biophys Res Commun, 2021, 561: 65-72. DOI: 10.1016/j.bbrc.2021.05.010.
    [22] ASSAILY W, RUBINGER DA, WHEATON K, et al. ROS-mediated p53 induction of Lpin1 regulates fatty acid oxidation in response to nutritional stress[J]. Mol Cell, 2011, 44(3): 491-501. DOI: 10.1016/j.molcel.2011.08.038.
    [23] ZHANG Y, FENG X, ZHANG J, et al. Iron regulatory protein 2 is a suppressor of mutant p53 in tumorigenesis[J]. Oncogene, 2019, 38(35): 6256-6269. DOI: 10.1038/s41388-019-0876-5.
    [24] CHANG HW, LEE M, LEE YS, et al. p53-dependent glutamine usage determines susceptibility to oxidative stress in radioresistant head and neck cancer cells[J]. Cell Signal, 2021, 77: 109820. DOI: 10.1016/j.cellsig.2020.109820.
    [25] TSAI TF, CHEN PC, LIN YC, et al. Miconazole contributes to NRF2 activation by noncanonical P62-KEAP1 pathway in bladder cancer cells[J]. Drug Des Devel Ther, 2020, 14: 1209-1218. DOI: 10.2147/DDDT.S227892.
    [26] SUN Y, HE L, WANG T, et al. Activation of p62-Keap1-Nrf2 pathway protects 6-hydroxydopamine-induced ferroptosis in dopaminergic cells[J]. Mol Neurobiol, 2020, 57(11): 4628-4641. DOI: 10.1007/s12035-020-02049-3.
    [27] DOLL S, FREITAS FP, SHAH R, et al. FSP1 is a glutathione-independent ferroptosis suppressor[J]. Nature, 2019, 575(7784): 693-698. DOI: 10.1038/s41586-019-1707-0.
    [28] BERSUKER K, HENDRICKS JM, LI Z, et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis[J]. Nature, 2019, 575(7784): 688-692. DOI: 10.1038/s41586-019-1705-2.
    [29] GAO M, YI J, ZHU J, et al. Role of mitochondria in ferroptosis[J]. Mol Cell, 2019, 73(2): 354-363. e3. DOI: 10.1016/j.molcel.2018.10.042.
    [30] BANALES JM, CARDINALE V, CARPINO G, et al. Expert consensus document: Cholangiocarcinoma: Current knowledge and future perspectives consensus statement from the European Network for the Study of Cholangiocarcinoma (ENS-CCA)[J]. Nat Rev Gastroenterol Hepatol, 2016, 13(5): 261-280. DOI: 10.1038/nrgastro.2016.51.
    [31] WEIGT J, MALFERTHEINER P. Cisplatin plus gemcitabine versus gemcitabine for biliary tract cancer[J]. Expert Rev Gastroenterol Hepatol, 2010, 4(4): 395-397. DOI: 10.1586/egh.10.45.
    [32] HAN JY, AHN KS, BAEK WK, et al. Usefulness of bile as a biomarker via ferroptosis and cysteine prenylation in cholangiocarcinoma; role of diagnosis and differentiation from benign biliary disease[J]. Surg Oncol, 2020, 34: 174-181. DOI: 10.1016/j.suronc.2020.04.019.
    [33] MOHR R, ÖZDIRIK B, KNORR J, et al. In vivo models for cholangiocarcinoma-what can we learn for human disease?[J]. Int J Mol Sci, 2020, 21(14): 4993. DOI: 10.3390/ijms21144993.
    [34] PARK JH, PYUN WY, PARK HW. Cancer metabolism: Phenotype, signaling and therapeutic targets[J]. Cells, 2020, 9(10): 2038. DOI: 10.3390/cells9102308.
    [35] KIRTONIA A, SETHI G, GARG M. The multifaceted role of reactive oxygen species in tumorigenesis[J]. Cell Mol Life Sci, 2020, 77(22): 4459-4483. DOI: 10.1007/s00018-020-03536-5.
    [36] GANZ T. Systemic iron homeostasis[J]. Physiol Rev, 2013, 93(4): 1721-1741. DOI: 10.1152/physrev.00008.2013.
    [37] MANCINELLI R, CUTONE A, ROSA L, et al. Different iron-handling in inflamed small and large cholangiocytes and in small and large-duct type intrahepatic cholangiocarcinoma[J]. Eur J Histochem, 2020, 64(4): 3156. DOI: 10.4081/ejh.2020.3156.
    [38] THANAN R, OIKAWA S, YONGVANIT P, et al. Inflammation-induced protein carbonylation contributes to poor prognosis for cholangiocarcinoma[J]. Free Radic Biol Med, 2012, 52(8): 1465-1472. DOI: 10.1016/j.freeradbiomed.2012.01.018.
    [39] JAMNONGKAN W, THANAN R, TECHASEN A, et al. Upregulation of transferrin receptor-1 induces cholangiocarcinoma progression via induction of labile iron pool[J]. Tumour Biol, 2017, 39(7): 1010428317717655. DOI: 10.1177/1010428317717655.
    [40] TRAN KT, COLEMAN HG, MCCAIN RS, et al. Serum biomarkers of iron status and risk of primary liver cancer: A systematic review and meta-analysis[J]. Nutr Cancer, 2019, 71(8): 1365-1373. DOI: 10.1080/01635581.2019.1609053.
    [41] CHEN GQ, BENTHANI FA, WU J, et al. Artemisinin compounds sensitize cancer cells to ferroptosis by regulating iron homeostasis[J]. Cell Death Differ, 2020, 27(1): 242-254. DOI: 10.1038/s41418-019-0352-3.
    [42] MA B, MENG H, TIAN Y, et al. Distinct clinical and prognostic implication of IDH1/2 mutation and other most frequent mutations in large duct and small duct subtypes of intrahepatic cholangiocarcinoma[J]. BMC Cancer, 2020, 20(1): 318. DOI: 10.1186/s12885-020-06804-6.
    [43] NABESHIMA T, HAMADA S, TAGUCHI K, et al. Keap1 deletion accelerates mutant K-ras/p53-driven cholangiocarcinoma[J]. Am J Physiol Gastrointest Liver Physiol, 2020, 318(3): g419-g427. DOI: 10.1152/ajpgi.00296.2019.
    [44] YE Z, HU Q, ZHUO Q, et al. Abrogation of ARF6 promotes RSL3-induced ferroptosis and mitigates gemcitabine resistance in pancreatic cancer cells[J]. Am J Cancer Res, 2020, 10(4): 1182-1193.
    [45] LEE J, YOU JH, SHIN D, et al. Inhibition of glutaredoxin 5 predisposes cisplatin-resistant head and neck cancer cells to ferroptosis[J]. Theranostics, 2020, 10(17): 7775-7786. DOI: 10.7150/thno.46903.
  • 加载中
图(1)
计量
  • 文章访问数:  794
  • HTML全文浏览量:  165
  • PDF下载量:  101
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-11
  • 录用日期:  2021-09-22
  • 出版日期:  2022-04-20
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回