中文English
ISSN 1001-5256 (Print)
ISSN 2097-3497 (Online)
CN 22-1108/R

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微小RNA-200c在胰腺癌中的研究进展

张尧 张锴 康鹏东 马超

引用本文:
Citation:

微小RNA-200c在胰腺癌中的研究进展

DOI: 10.3969/j.issn.1001-5256.2022.04.045
基金项目: 

河南省科技厅科技攻关项目 (162102310315)

利益冲突声明:所有作者均声明不存在利益冲突。
作者贡献声明:张尧负责文献整理,撰写论文;张锴、康鹏东参与查阅文献,修改论文;马超负责拟定写作方向,指导撰写文章并最终定稿。
详细信息
    通信作者:

    马超,mjc1566@sina.com

Research advances in microRNA-200c in pancreatic cancer

Research funding: 

Science and Technology Key Project of Henan Province (162102310315)

More Information
  • 摘要: 微小RNA-200c(miR-200c)是一类非编码小分子RNA,参与基因转录后水平调控,与肿瘤的发生发展密切相关。本文介绍了miR-200c对胰腺癌侵袭和转移的抑制作用,及其在胰腺癌的早期诊断、预后判断等方面的临床应用价值,提示miR-200c可作为抑癌基因及有效分子标志物和未来临床研究重点。

     

  • [1] VINCENT A, HERMAN J, SCHULICK R, et al. Pancreatic cancer[J]. Lancet, 2011, 378(9791): 607-620. DOI: 10.1016/S0140-6736(10)62307-0.
    [2] RACHAGANI S, MACHA MA, HEIMANN N, et al. Clinical implications of miRNAs in the pathogenesis, diagnosis and therapy of pancreatic cancer[J]. Adv Drug Deliv Rev, 2015, 81: 16-33. DOI: 10.1016/j.addr.2014.10.020.
    [3] CHAN B, MANLEY J, LEE J, et al. The emerging roles of microRNAs in cancer metabolism[J]. Cancer Lett, 2015, 356(2 Pt A): 301-308. DOI: 10.1016/j.canlet.2014.10.011.
    [4] BERINDAN-NEAGOE I, MONROIG PDEL C, PASCULLI B, et al. MicroRNAome genome: A treasure for cancer diagnosis and therapy[J]. CA Cancer J Clin, 2014, 64(5): 311-336. DOI: 10.3322/caac.21244.
    [5] FENG X, WANG Z, FILLMORE R, et al. MiR-200, a new star miRNA in human cancer[J]. Cancer Lett, 2014, 344(2): 166-173. DOI: 10.1016/j.canlet.2013.11.004.
    [6] LIU PF, JIANG WH, HAN YT, et al. Integrated microRNA-mRNA analysis of pancreatic ductal adenocarcinoma[J]. Genet Mol Res, 2015, 14(3): 10288-10297. DOI: 10.4238/2015.August.28.14.
    [7] KARAMITOPOULOU E, HAEMMIG S, BAUMGARTNER U, et al. MicroRNA dysregulation in the tumor microenvironment influences the phenotype of pancreatic cancer[J]. Mod Pathol, 2017, 30(8): 1116-1125. DOI: 10.1038/modpathol.2017.35.
    [8] KUMAR S, NAG A, MANDAL CC. A comprehensive review on miR-200c, a promising cancer biomarker with therapeutic potential[J]. Curr Drug Targets, 2015, 16(12): 1381-1403. DOI: 10.2174/1389450116666150325231419.
    [9] BYUN Y, CHOI YC, JEONG Y, et al. MiR-200c downregulates HIF-1α and inhibits migration of lung cancer cells[J]. Cell Mol Biol Lett, 2019, 24: 28. DOI: 10.1186/s11658-019-0152-2.
    [10] VESCARELLI E, GERINI G, MEGIORNI F, et al. MiR-200c sensitizes Olaparib-resistant ovarian cancer cells by targeting Neuropilin 1[J]. J Exp Clin Cancer Res, 2020, 39(1): 3. DOI: 10.1186/s13046-019-1490-7.
    [11] ALI S, SALEH H, SETHI S, et al. MicroRNA profiling of diagnostic needle aspirates from patients with pancreatic cancer[J]. Br J Cancer, 2012, 107(8): 1354-1360. DOI: 10.1038/bjc.2012.383.
    [12] PAN Y, LU F, XIONG P, et al. WIPF1 antagonizes the tumor suppressive effect of miR-141/200c and is associated with poor survival in patients with PDAC[J]. J Exp Clin Cancer Res, 2018, 37(1): 167. DOI: 10.1186/s13046-018-0848-6.
    [13] PERUSINA LANFRANCA M, THOMPSON JK, BEDNAR F, et al. Metabolism and epigenetics of pancreatic cancer stem cells[J]. Semin Cancer Biol, 2019, 57: 19-26. DOI: 10.1016/j.semcancer.2018.09.008.
    [14] MA C, HUANG T, DING YC, et al. MicroRNA-200c overexpression inhibits chemoresistance, invasion and colony formation of human pancreatic cancer stem cells[J]. Int J Clin Exp Pathol, 2015, 8(6): 6533-6539.
    [15] GABLO N, TRACHTOVA K, PROCHAZKA V, et al. Identification and validation of circulating micrornas as prognostic biomarkers in pancreatic ductal adenocarcinoma patients undergoing surgical resection[J]. J Clin Med, 2020, 9(8): 2440. DOI: 10.3390/jcm9082440.
    [16] THIERY JP, SLEEMAN JP. Complex networks orchestrate epithelial-mesenchymal transitions[J]. Nat Rev Mol Cell Biol, 2006, 7(2): 131-142. DOI: 10.1038/nrm1835.
    [17] AIELLO NM, KANG Y. Context-dependent EMT programs in cancer metastasis[J]. J Exp Med, 2019, 216(5): 1016-1026. DOI: 10.1084/jem.20181827.
    [18] ZHOU P, LI B, LIU F, et al. The epithelial to mesenchymal transition (EMT) and cancer stem cells: Implication for treatment resistance in pancreatic cancer[J]. Mol Cancer, 2017, 16(1): 52. DOI: 10.1186/s12943-017-0624-9.
    [19] PASTUSHENKO I, BLANPAIN C. EMT transition states during tumor progression and metastasis[J]. Trends Cell Biol, 2019, 29(3): 212-226. DOI: 10.1016/j.tcb.2018.12.001.
    [20] BAKIR B, CHIARELLA AM, PITARRESI JR, et al. EMT, MET, plasticity, and tumor metastasis[J]. Trends Cell Biol, 2020, 30(10): 764-776. DOI: 10.1016/j.tcb.2020.07.003.
    [21] DYKXHOORN DM. MicroRNAs and metastasis: Little RNAs go a long way[J]. Cancer Res, 2010, 70(16): 6401-6406. DOI: 10.1158/0008-5472.CAN-10-1346.
    [22] GREGORY PA, BERT AG, PATERSON EL, et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1[J]. Nat Cell Biol, 2008, 10(5): 593-601. DOI: 10.1038/ncb1722.
    [23] BURK U, SCHUBERT J, WELLNER U, et al. A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells[J]. EMBO Rep, 2008, 9(6): 582-589. DOI: 10.1038/embor.2008.74.
    [24] DIAZ-RIASCOS ZV, GINESTA MM, FABREGAT J, et al. Expression and role of MicroRNAs from the miR-200 family in the tumor formation and metastatic propensity of pancreatic cancer[J]. Mol Ther Nucleic Acids, 2019, 17: 491-503. DOI: 10.1016/j.omtn.2019.06.015.
    [25] KATOCH A, JAMWAL VL, FAHEEM MM, et al. Overlapping targets exist between the Par-4 and miR-200c axis which regulate EMT and proliferation of pancreatic cancer cells[J]. Transl Oncol, 2021, 14(1): 100879. DOI: 10.1016/j.tranon.2020.100879.
    [26] BRACKEN CP, GREGORY PA, KOLESNIKOFF N, et al. A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition[J]. Cancer Res, 2008, 68(19): 7846-7854. DOI: 10.1158/0008-5472.CAN-08-1942.
    [27] WELLNER U, SCHUBERT J, BURK UC, et al. The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs[J]. Nat Cell Biol, 2009, 11(12): 1487-1495. DOI: 10.1038/ncb1998.
    [28] MA C, DING YC, YU W, et al. MicroRNA-200c overexpression plays an inhibitory role in human pancreatic cancer stem cells by regulating epithelial-mesenchymal transition[J]. Minerva Med, 2015, 106(4): 193-202.
    [29] RADHAKRISHNAN P, MOHR AM, GRANDGENETT PM, et al. MicroRNA-200c modulates the expression of MUC4 and MUC16 by directly targeting their coding sequences in human pancreatic cancer[J]. PLoS One, 2013, 8(10): e73356. DOI: 10.1371/journal.pone.0073356.
    [30] HUANG CC, LIN CM, HUANG YJ, et al. Garcinol downregulates Notch1 signaling via modulating miR-200c and suppresses oncogenic properties of PANC-1 cancer stem-like cells[J]. Biotechnol Appl Biochem, 2017, 64(2): 165-173. DOI: 10.1002/bab.1446.
    [31] STOICA AF, CHANG CH, PAUKLIN S. Molecular therapeutics of pancreatic ductal adenocarcinoma: Targeted pathways and the role of cancer stem cells[J]. Trends Pharmacol Sci, 2020, 41(12): 977-993. DOI: 10.1016/j.tips.2020.09.008.
    [32] RAGUSA M, BARBAGALLO C, BREX D, et al. Molecular crosstalking among noncoding RNAs: A new network layer of genome regulation in cancer[J]. Int J Genomics, 2017, 2017: 4723193. DOI: 10.1155/2017/4723193.
    [33] ZHUO M, YUAN C, HAN T, et al. A novel feedback loop between high MALAT-1 and low miR-200c-3p promotes cell migration and invasion in pancreatic ductal adenocarcinoma and is predictive of poor prognosis[J]. BMC Cancer, 2018, 18(1): 1032. DOI: 10.1186/s12885-018-4954-9.
    [34] SOUBANI O, ALI AS, LOGNA F, et al. Re-expression of miR-200 by novel approaches regulates the expression of PTEN and MT1-MMP in pancreatic cancer[J]. Carcinogenesis, 2012, 33(8): 1563-1571. DOI: 10.1093/carcin/bgs189.
    [35] HUANG GL, SUN J, LU Y, et al. MiR-200 family and cancer: From a meta-analysis view[J]. Mol Aspects Med, 2019, 70: 57-71. DOI: 10.1016/j.mam.2019.09.005.
    [36] LI Y, VANDENBOOM TG 2nd, KONG D, et al. Up-regulation of miR-200 and let-7 by natural agents leads to the reversal of epithelial-to-mesenchymal transition in gemcitabine-resistant pancreatic cancer cells[J]. Cancer Res, 2009, 69(16): 6704-6712. DOI: 10.1158/0008-5472.CAN-09-1298.
    [37] ARUMUGAM T, RAMACHANDRAN V, FOURNIER KF, et al. Epithelial to mesenchymal transition contributes to drug resistance in pancreatic cancer[J]. Cancer Res, 2009, 69(14): 5820-5828. DOI: 10.1158/0008-5472.CAN-08-2819.
    [38] CHITKARA D, MITTAL A, MAHATO RI. miRNAs in pancreatic cancer: Therapeutic potential, delivery challenges and strategies[J]. Adv Drug Deliv Rev, 2015, 81: 34-52. DOI: 10.1016/j.addr.2014.09.006.
    [39] WANG ZG, YANG R, PENG MJ, et al. Research advances of exosome miRNA-mediated drug-resistance in pancreatic cancer[J]. Chin J Dig Surg, 2021, 20(4): 471-478. DOI: 10.3760/cma.j.cn115610-20210219-00081.

    王智刚, 杨睿, 彭敏劼, 等. 外泌体微小RNAs介导的胰腺癌耐药机制研究进展[J]. 中华消化外科杂志, 2021, 20(4): 471-478. DOI: 10.3760/cma.j.cn115610-20210219-00081.
    [40] TAKEI Y, KADOMATSU K, YUZAWA Y, et al. A small interfering RNA targeting vascular endothelial growth factor as cancer therapeutics[J]. Cancer Res, 2004, 64(10): 3365-3370. DOI: 10.1158/0008-5472.CAN-03-2682.
    [41] MEKALA JR, NAUSHAD SM, PONNUSAMY L, et al. Epigenetic regulation of miR-200 as the potential strategy for the therapy against triple-negative breast cancer[J]. Gene, 2018, 641: 248-258. DOI: 10.1016/j.gene.2017.10.018.
  • 加载中
计量
  • 文章访问数:  334
  • HTML全文浏览量:  85
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-31
  • 录用日期:  2021-10-26
  • 出版日期:  2022-04-20
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

目录

    /

    返回文章
    返回